Entropy solutions for parabolic equations in Musielak framework without sign condition and with measure data
Archivum mathematicum, Tome 56 (2020) no. 2, pp. 65-106 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove an existence result of entropy solutions for a class of strongly nonlinear parabolic problems in Musielak-Sobolev spaces, without using the sign condition on the nonlinearities and with measure data.
We prove an existence result of entropy solutions for a class of strongly nonlinear parabolic problems in Musielak-Sobolev spaces, without using the sign condition on the nonlinearities and with measure data.
DOI : 10.5817/AM2020-2-65
Classification : 35K55, 46E35, 80M10
Keywords: inhomogeneous Musielak-Orlicz-Sobolev spaces; parabolic problems; Galerkin method
@article{10_5817_AM2020_2_65,
     author = {Elemine Vall, M.S.B. and Ahmed, A. and Touzani, A. and Benkirane, A.},
     title = {Entropy solutions for parabolic equations in {Musielak} framework without sign condition and with measure data},
     journal = {Archivum mathematicum},
     pages = {65--106},
     year = {2020},
     volume = {56},
     number = {2},
     doi = {10.5817/AM2020-2-65},
     mrnumber = {4115085},
     zbl = {07217115},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2020-2-65/}
}
TY  - JOUR
AU  - Elemine Vall, M.S.B.
AU  - Ahmed, A.
AU  - Touzani, A.
AU  - Benkirane, A.
TI  - Entropy solutions for parabolic equations in Musielak framework without sign condition and with measure data
JO  - Archivum mathematicum
PY  - 2020
SP  - 65
EP  - 106
VL  - 56
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2020-2-65/
DO  - 10.5817/AM2020-2-65
LA  - en
ID  - 10_5817_AM2020_2_65
ER  - 
%0 Journal Article
%A Elemine Vall, M.S.B.
%A Ahmed, A.
%A Touzani, A.
%A Benkirane, A.
%T Entropy solutions for parabolic equations in Musielak framework without sign condition and with measure data
%J Archivum mathematicum
%D 2020
%P 65-106
%V 56
%N 2
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2020-2-65/
%R 10.5817/AM2020-2-65
%G en
%F 10_5817_AM2020_2_65
Elemine Vall, M.S.B.; Ahmed, A.; Touzani, A.; Benkirane, A. Entropy solutions for parabolic equations in Musielak framework without sign condition and with measure data. Archivum mathematicum, Tome 56 (2020) no. 2, pp. 65-106. doi: 10.5817/AM2020-2-65

[1] Aberqi, A., Bennouna, J., Mekkour, M., Redwane, H.: Existence results for a nonlinear parabolic problems with lower order terms. Int. J. Math. Anal. 7 (27) (2013), 1323–1340. | DOI | MR

[2] Akdim, Y., Bennouna, J., Mekkour, M., Redwane, H.: Existence of renormalized solutions for parabolic equations without the sign condition and with three unbounded nonlinearities. Appl. Math. (Warsaw) 39 (1) (2012), 1–22. | DOI | MR

[3] Azroul, E., Benboubker, M.B., Redwane, H., Yazough, C.: Renormalized solutions for a class of nonlinear parabolic equations without sign condition involving nonstandard growth. An. Univ. Craiova Ser. Mat. Inform. 41 (1) (2014), 69–87. | MR

[4] Azroul, E., Hjiaj, H., Touzani, A.: Existence and regularity of entropy solutions for strongly nonlinear $p(x)$-elliptic equations. EJDE 2013 (68) (2013), 1–27. | MR

[5] Azroul, E., Lekhlifi, M. El, Redwane, H., Touzani, A.: Entropy solutions of nonlinear parablic equations in Orlicz–Sobolev spaces, without sign condition and $L^1$ data. J. Nonlinear Evolution Equa. and Appl. 2014 (7) (2014), 101–130. | MR

[6] Bénilan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M., Vazquez, J.L.: An L1-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 22 (1995), 241–273. | MR

[7] Benkirane, A., Sidi El Vally, M.: Some approximation properties in Musielak-Orlicz-Sobolev spaces. Thai. J. Math. 10 (2012), 371–381. | MR

[8] Benkirane, A., Sidi El Vally, M.: Variational inequalities in Musielak-Orlicz-Sobolev spaces. Bull. Belg. Math. Soc. Simon Stevin 21 (5) (2014), 787–811. | DOI | MR

[9] Benkirane, A., Val), M. Sidi El Vally (Ould Mohamedhen: An existence result for nonlinear elliptic equations in Musielak-Orlicz-Sobolev spaces. Bull. Belg. Math. Soc. Simon Stevin 20 (1) (2013), 57–75. | DOI | MR

[10] Boccardo, L., Dall’aglio, A., Gallouët, T., Orsina, L.: Nonlinear parabolic equations with measure data. J. Funct. Anal. 147 (1997), 237–258. | DOI | MR

[11] Boccardo, L., Gallouët, T.: Nonlinear elliptic and parabolic equations involving measure as data. J. Funct. Anal. 87 (1989), 149–169. | DOI | MR

[12] Boccardo, L., Murat, F.: Almost everywhere convergence of the gradients. Nonlinear Anal. 19 (6) (1992), 581–597. | DOI | MR

[13] Elemine Vall, M.S.B., Ahmed, A., Touzani, A., Benkirane, A.: Entropy solutions to parabolic equations in Musielak framework involving non coercivity term in divergence form. Math. Bohem. 143 (3) (2018), 225–249. | DOI | MR

[14] Elemine Vall, M.S.B., Ahmed, A., Touzani, A., Benkirane, A.: Existence of entropy solutions for nonlinear elliptic equations in Musielak framework with $L^1$ data. Bol. Soc. Parana. Mat. (3) 36 (1) (2018), 125–150. | DOI | MR

[15] Elmahi, A.: Strongly nonlinear parabolic initial-boundary value problems in Orlicz spaces. EJDE 09 (2002), 203–220, Proceedings of the 2002 Fez Conference on Partial Differential Equations. | MR

[16] Gossez, J.-P.: Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients. Trans. Amer. Math. Soc. 190 (1974), 163–205. | DOI | MR

[17] Gwiazda, P., Minakowski, P., Wróblewska-Kamińska, A.: Elliptic problems in generalized Orlicz Musielak spaces. Cent. Eur. J. Math. 10 (6) (2012), 2019–2032. | MR

[18] Gwiazda, P., Swierczewska-Gwiazda, A., Wróblewska-Kamińska, A.: Generalized Stokes system in Orlicz space. Discrete Contin. Dyn. Syst. 32 (6) (2012), 2125–2146. | DOI | MR

[19] Gwiazda, P., Wittbold, P., Wróblewska-Kamińska, A., Zimmermann, A.: Renormalized solutions of nonlinear elliptic problems in generalized Orlicz spaces. J. Differential Equations 253 (2012), 635–666. | DOI | MR

[20] Gwiazda, P., Wittbold, P., Wróblewska-Kamińska, A., Zimmermann, A.: Renormalized solutions to nonlinear parabolic problems in generalized Musielak Orlicz spaces. Nonlinear Anal. 129 (2015), 1–36. | MR

[21] Khellou, M. Ait, Benkirane, A., Douiri, S.M.: Existence of solutions for elliptic equations having natural growth terms in Musielak Orlicz spaces. J. Math. Comput. Sci. 4 (4) (2014), 665–688.

[22] Khoi, L. Vy: On second order elliptic equations and variational inequalities with anisotropic principal operators. Topol. Methods Nonlinear Anal. 44 (1) (2014), 41–72. | MR

[23] Landes, R., Mustonen, V.: A strongly nonlinear parabolic initial-boundary value problem. Ark. Math. 25 (1987), 29–40. | DOI | MR

[24] Meskine, D.: Parabolic equations with measure data in Orlicz spaces. J. Evol. Equ. 5 (4) (2005), 529–543. | DOI | MR

[25] Musielak, J.: Modular spaces and Orlicz spaces. Lecture Notes in Mathematics, vol. 1034, Springer-Verlag, Berlin, 1983, pp. iii+222. | MR

[26] Oubeid, M.L. Ahmed, Benkirane, A., Vally, M. Sidi El: Nonlinear elliptic equations involving measure data in Musielak-Orlicz-Sobolev spaces. J. Abstr. Differ. Equ. Appl. 4 (2013), 43–57. | MR

[27] Oubeid, M.L. Ahmed, Benkirane, A., Vally, M. Sidi El: Strongly nonlinear parabolic problems in Musielak-Orlicz-Sobolev spaces. Bol. Soc. Parana. Mat. (3) 33 (1) (2015), 193–225. | MR

[28] Redwane, H.: Existence Results for a class of parabolic equations in Orlicz spaces. Electron. J. Qual. Theory Differ. Equ. 2010 (2) (2010), 1–19. | DOI | MR

[29] Simon, J.: Compact sets in the space $L^p(0, T, B)$. Ann. Mat. Pura Appl. 146 (1987), 65–96. | DOI | MR

[30] Swierczewska, A., Gwiazda, P.: Nonlinear parabolic problems in Musielak Orlicz spaces. Nonlinear Anal. 98 (2014), 48–65. | DOI | MR

Cité par Sources :