Oscillation criteria for fourth order half-linear differential equations
Archivum mathematicum, Tome 56 (2020) no. 2, pp. 115-125 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Criteria for oscillatory behavior of solutions of fourth order half-linear differential equations of the form \begin{equation*} \big (|y^{\prime \prime }|^\alpha {\rm sgn\ } y^{\prime \prime }\big )^{\prime \prime } + q(t)|y|^\alpha {\rm sgn}\ y = 0, \quad t \ge a > 0, A \end{equation*} where $\alpha > 0$ is a constant and $q(t)$ is positive continuous function on $[a,\infty )$, are given in terms of an increasing continuously differentiable function $\omega (t)$ from $[a,\infty )$ to $(0,\infty )$ which satisfies $\int _a^\infty 1/(t\omega (t))\,dt \infty $.
Criteria for oscillatory behavior of solutions of fourth order half-linear differential equations of the form \begin{equation*} \big (|y^{\prime \prime }|^\alpha {\rm sgn\ } y^{\prime \prime }\big )^{\prime \prime } + q(t)|y|^\alpha {\rm sgn}\ y = 0, \quad t \ge a > 0, A \end{equation*} where $\alpha > 0$ is a constant and $q(t)$ is positive continuous function on $[a,\infty )$, are given in terms of an increasing continuously differentiable function $\omega (t)$ from $[a,\infty )$ to $(0,\infty )$ which satisfies $\int _a^\infty 1/(t\omega (t))\,dt \infty $.
DOI : 10.5817/AM2020-2-115
Classification : 34C10
Keywords: half-linear differential equation; oscillatory solutions
@article{10_5817_AM2020_2_115,
     author = {Jaro\v{s}, Jaroslav and Taka\^{s}i, Kusano and Tanigawa, Tomoyuki},
     title = {Oscillation criteria for fourth order half-linear differential equations},
     journal = {Archivum mathematicum},
     pages = {115--125},
     year = {2020},
     volume = {56},
     number = {2},
     doi = {10.5817/AM2020-2-115},
     mrnumber = {4115087},
     zbl = {07217117},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2020-2-115/}
}
TY  - JOUR
AU  - Jaroš, Jaroslav
AU  - Takaŝi, Kusano
AU  - Tanigawa, Tomoyuki
TI  - Oscillation criteria for fourth order half-linear differential equations
JO  - Archivum mathematicum
PY  - 2020
SP  - 115
EP  - 125
VL  - 56
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2020-2-115/
DO  - 10.5817/AM2020-2-115
LA  - en
ID  - 10_5817_AM2020_2_115
ER  - 
%0 Journal Article
%A Jaroš, Jaroslav
%A Takaŝi, Kusano
%A Tanigawa, Tomoyuki
%T Oscillation criteria for fourth order half-linear differential equations
%J Archivum mathematicum
%D 2020
%P 115-125
%V 56
%N 2
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2020-2-115/
%R 10.5817/AM2020-2-115
%G en
%F 10_5817_AM2020_2_115
Jaroš, Jaroslav; Takaŝi, Kusano; Tanigawa, Tomoyuki. Oscillation criteria for fourth order half-linear differential equations. Archivum mathematicum, Tome 56 (2020) no. 2, pp. 115-125. doi: 10.5817/AM2020-2-115

[1] Kamo, K., Usami, H.: Oscillation theorems for fourth-order quasilinear ordinary differential equations. Studia Sci. Math. Hungar. 39 (2002), 385–406. | MR | Zbl

[2] Kamo, K., Usami, H.: Nonlinear oscillations of fourth order quasilinear ordinary differential equations. Acta Math. Hungar. 132 (3) (2011), 207–222. | DOI | MR | Zbl

[3] Kiguradze, I.T.: On the oscillation of solutions of the equation $d^mu/dt^m+a(t)|u|^n {\rm sign} \ u = 0$. Mat. Sb. 65 (2) (1964), 172–187. | MR

[4] Kusano, T., Manojlović, J., Tanigawa, T.: Sharp oscillation criteria for a class of fourth order nonlinear differential equations. Rocky Mountain J. Math. 41 (1) (2011), 249–274. | DOI | MR | Zbl

[5] Kusano, T., Tanigawa, T.: On the structure of positive solutions of a class of fourth order nonlinear differential equations. Ann. Mat. Pura Appl. 85 (2006), 521–536. | MR

[6] Leighton, W., Nehari, Z.: On the oscillation of solutions of self-adjoint linear differential equations of the fourth order. Trans. Amer. Math. Soc. 89 (1958), 325–377. | DOI | MR

[7] Marić, V.: Regular Variation and Differential Equations. Lecture Notes in Math. 1726 (2000), Springer Verlag, Berlin. | DOI | MR

[8] Naito, M., Wu, F.: A note on the existence and asymptotic behavior of nonoscillatory solutions of fourth order quasilinear differential equations. Acta Math. Hungar. 102 (3) (2004), 177–202. | DOI | MR

[9] Naito, M., Wu, F.: On the existence of eventually positive solutions of fourth-order quasilinear differential equations. Nonlinear Anal. 57 (2) (2004), 253–363. | DOI | MR

[10] Švec, M.: Sur le compontement asymptotique des intégrales de l’equation différetielle $y^{(4)}+Q(x)y = 0$. Czechoslovak Math. J. 8 (83) (1958), 230–245. | MR

[11] Swanson, C.A.: Comparison and Oscillation Theory of Linear Differential Equations. Academic Press, New York, 1968. | MR | Zbl

[12] Tanigawa, T.: Oscillation and nonoscillation theorems for a class of fourth order quasilinear functional differential equations. Hiroshima Math. J. 33 (2003), 297–316. | DOI | MR

[13] Tanigawa, T.: Oscillation criteria for a class of higher order nonlinear differential equations. Mem. Differential Equations Math. Phys. 37 (2006), 137–152. | MR

[14] Wu, F.: Nonoscillatory solutions of fourth order quasilinear differential equations. Funkcial. Ekvac. 45 (1) (2002), 71–88. | MR

[15] Wu, F.: Existence of eventually positive solutions of fourth order quasilinear differential equations. J. Math. Anal. Appl. 389 (2012), 632–646. | DOI | MR | Zbl

Cité par Sources :