Unit-regularity and representability for semiartinian $*$-regular rings
Archivum mathematicum, Tome 56 (2020) no. 1, pp. 43-47
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We show that any semiartinian $*$-regular ring $R$ is unit-regular; if, in addition, $R$ is subdirectly irreducible then it admits a representation within some inner product space.
DOI :
10.5817/AM2020-1-43
Classification :
16E50, 16W10
Keywords: $*$-regular ring; representable; unit-regular
Keywords: $*$-regular ring; representable; unit-regular
@article{10_5817_AM2020_1_43,
author = {Herrmann, Christian},
title = {Unit-regularity and representability for semiartinian $*$-regular rings},
journal = {Archivum mathematicum},
pages = {43--47},
publisher = {mathdoc},
volume = {56},
number = {1},
year = {2020},
doi = {10.5817/AM2020-1-43},
mrnumber = {4075887},
zbl = {07177879},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2020-1-43/}
}
TY - JOUR AU - Herrmann, Christian TI - Unit-regularity and representability for semiartinian $*$-regular rings JO - Archivum mathematicum PY - 2020 SP - 43 EP - 47 VL - 56 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2020-1-43/ DO - 10.5817/AM2020-1-43 LA - en ID - 10_5817_AM2020_1_43 ER -
Herrmann, Christian. Unit-regularity and representability for semiartinian $*$-regular rings. Archivum mathematicum, Tome 56 (2020) no. 1, pp. 43-47. doi: 10.5817/AM2020-1-43
Cité par Sources :