Unit-regularity and representability for semiartinian $*$-regular rings
Archivum mathematicum, Tome 56 (2020) no. 1, pp. 43-47.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We show that any semiartinian $*$-regular ring $R$ is unit-regular; if, in addition, $R$ is subdirectly irreducible then it admits a representation within some inner product space.
DOI : 10.5817/AM2020-1-43
Classification : 16E50, 16W10
Keywords: $*$-regular ring; representable; unit-regular
@article{10_5817_AM2020_1_43,
     author = {Herrmann, Christian},
     title = {Unit-regularity and representability for semiartinian $*$-regular rings},
     journal = {Archivum mathematicum},
     pages = {43--47},
     publisher = {mathdoc},
     volume = {56},
     number = {1},
     year = {2020},
     doi = {10.5817/AM2020-1-43},
     mrnumber = {4075887},
     zbl = {07177879},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2020-1-43/}
}
TY  - JOUR
AU  - Herrmann, Christian
TI  - Unit-regularity and representability for semiartinian $*$-regular rings
JO  - Archivum mathematicum
PY  - 2020
SP  - 43
EP  - 47
VL  - 56
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2020-1-43/
DO  - 10.5817/AM2020-1-43
LA  - en
ID  - 10_5817_AM2020_1_43
ER  - 
%0 Journal Article
%A Herrmann, Christian
%T Unit-regularity and representability for semiartinian $*$-regular rings
%J Archivum mathematicum
%D 2020
%P 43-47
%V 56
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2020-1-43/
%R 10.5817/AM2020-1-43
%G en
%F 10_5817_AM2020_1_43
Herrmann, Christian. Unit-regularity and representability for semiartinian $*$-regular rings. Archivum mathematicum, Tome 56 (2020) no. 1, pp. 43-47. doi : 10.5817/AM2020-1-43. http://geodesic.mathdoc.fr/articles/10.5817/AM2020-1-43/

Cité par Sources :