Keywords: F-fundamental group scheme; Frobenius-finite Vector bundles
@article{10_5817_AM2020_1_21,
author = {Amrutiya, Sanjay},
title = {A note on certain {Tannakian} group schemes},
journal = {Archivum mathematicum},
pages = {21--29},
year = {2020},
volume = {56},
number = {1},
doi = {10.5817/AM2020-1-21},
mrnumber = {4075885},
zbl = {07177877},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2020-1-21/}
}
Amrutiya, Sanjay. A note on certain Tannakian group schemes. Archivum mathematicum, Tome 56 (2020) no. 1, pp. 21-29. doi: 10.5817/AM2020-1-21
[1] Amrutiya, S., Biswas, I.: On the $F$-fundamental group scheme. Bull. Sci. Math. 34 (2010), 461–474. | DOI | MR
[2] Atiyah, M.F.: Vector bundles over an elliptic curve. Proc. London Math. Soc. 3 (1957), 414–452. | MR
[3] Biswas, I., Ducrohet, L.: An analog of a theorem of Lange and Stuhler for principal bundles. C. R. Acad. Sci. Paris, Ser. I 345 (2007), 495–497. | DOI | MR
[4] Biswas, I., Holla, Y.: Comparison of fundamental group schemes of a projective variety and an ample hypersurface. J. Algebraic Geom. 16 (2007), 547–597. | DOI | MR
[5] Biswas, I., Parameswaran, A.J., Subramanian, S.: Monodromy group for a strongly semistable principal bundle over a curve. Duke Math. J. 132 (2006), 1–48. | MR
[6] Deligne, P., Milne, J.S.: Tannakian Categories. Hodge cycles, motives and Shimura varieties, Lecture Notes in Math, vol. 900, Springer–Verlag, Berlin–Heidelberg–New York, 1982. | DOI | MR
[7] Hogadi, A., Mehta, V.B.: Birational invariance of the S-fundamental group scheme. Pure Appl. Math. Q. 7 (4) (2011), 1361–1369, Special Issue: In memory of Eckart Viehweg. | DOI | MR
[8] Ishimura, S.: A descent problem of vector bundles and its applications. J. Math. Kyoto Univ. 23 (1983), 73–83. | DOI | MR
[9] Lange, H., Stuhler, U.: Vektorbündel auf Kurven und Darstellungen der algebraischen Fudamentalgruppe. Math. Z. 156 (1977), 73–83. | DOI | MR
[10] Langer, A.: Semistable sheaves in positive characteristic. Ann. of Math. 159 (2004), 251–276. | DOI | MR
[11] Langer, A.: On S-fundamental group scheme. Ann. Inst. Fourier (Grenoble) 61 (5) (2011), 2077–2119. | DOI | MR
[12] Lekaus, S.: Vector bundles of degree zero over an elliptic curve. C. R. Math. Acad. Sci. Paris 335 (2002), 351–354. | DOI | MR
[13] Nori, M.V.: The fundamental group-scheme. Proc. Indian Acad. Sci. Math. Sci. 91 (2) (1982), 73–122. | DOI | MR
[14] Oda, T.: Vector bundles on an elliptic curve. Nagoya Math. J. 43 (1971), 41–72. | DOI | MR
[15] Otabe, S.: An extension of Nori fundamental group. Comm. Algebra 45 (2017), 3422–3448. | DOI | MR
Cité par Sources :