A note on certain Tannakian group schemes
Archivum mathematicum, Tome 56 (2020) no. 1, pp. 21-29.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this note, we prove that the $F$-fundamental group scheme is a birational invariant for smooth projective varieties. We prove that the $F$-fundamental group scheme is naturally a quotient of the Nori fundamental group scheme. For elliptic curves, it turns out that the $F$-fundamental group scheme and the Nori fundamental group scheme coincide. We also consider an extension of the Nori fundamental group scheme in positive characteristic using semi-essentially finite vector bundles, and prove that in this way, we do not get a non-trivial extension of the Nori fundamental group scheme for elliptic curves, unlike in characteristic zero.
DOI : 10.5817/AM2020-1-21
Classification : 14F05, 14L15
Keywords: F-fundamental group scheme; Frobenius-finite Vector bundles
@article{10_5817_AM2020_1_21,
     author = {Amrutiya, Sanjay},
     title = {A note on certain {Tannakian} group schemes},
     journal = {Archivum mathematicum},
     pages = {21--29},
     publisher = {mathdoc},
     volume = {56},
     number = {1},
     year = {2020},
     doi = {10.5817/AM2020-1-21},
     mrnumber = {4075885},
     zbl = {07177877},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2020-1-21/}
}
TY  - JOUR
AU  - Amrutiya, Sanjay
TI  - A note on certain Tannakian group schemes
JO  - Archivum mathematicum
PY  - 2020
SP  - 21
EP  - 29
VL  - 56
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2020-1-21/
DO  - 10.5817/AM2020-1-21
LA  - en
ID  - 10_5817_AM2020_1_21
ER  - 
%0 Journal Article
%A Amrutiya, Sanjay
%T A note on certain Tannakian group schemes
%J Archivum mathematicum
%D 2020
%P 21-29
%V 56
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2020-1-21/
%R 10.5817/AM2020-1-21
%G en
%F 10_5817_AM2020_1_21
Amrutiya, Sanjay. A note on certain Tannakian group schemes. Archivum mathematicum, Tome 56 (2020) no. 1, pp. 21-29. doi : 10.5817/AM2020-1-21. http://geodesic.mathdoc.fr/articles/10.5817/AM2020-1-21/

Cité par Sources :