Keywords: left-invariant generalized Ricci solitons; harmonicity of invariant vector fields; homogeneous structures
@article{10_5817_AM2020_1_11,
author = {Nasehi, Mehri},
title = {On the geometrical properties of {Heisenberg} groups},
journal = {Archivum mathematicum},
pages = {11--19},
year = {2020},
volume = {56},
number = {1},
doi = {10.5817/AM2020-1-11},
mrnumber = {4075884},
zbl = {07177876},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2020-1-11/}
}
Nasehi, Mehri. On the geometrical properties of Heisenberg groups. Archivum mathematicum, Tome 56 (2020) no. 1, pp. 11-19. doi: 10.5817/AM2020-1-11
[1] Batat, W., Onda, K.: Algebraic Ricci solitons of three-dimensional Lorentzian Lie groups. J. Geom. Phys. 114 (2017), 138–152. | DOI | MR
[2] Batat, W., Rahmani, S.: Homogeneous Lorentzian structures on the generalized Heisenberg group. Differ. Geom. Dyn. Syst. 12 (2010), 12–17. | MR
[3] Brozos-Vazquez, M., Calvaruso, G., Garcia-Rio, E., Gavino-Fernandez, S.: Three-dimensional Lorentzian homogeneous Ricci solitons. Israel J. Math. 188 (2012), 385–403. | DOI | MR
[4] Calvaruso, G.: Einstein-like metrics on three-dimensional homogeneous Lorentzian manifolds. Geom. Dedicata 127 (2007), 99–119. | DOI | MR
[5] Calvaruso, G.: Harmonicity properties of invariant vector fields on three-dimensional Lorentzian Lie groups. J. Geom. Phys. 61 (2011), 498–515. | DOI | MR
[6] Calvaruso, G.: Harmonicity of vector fields on four-dimensional generalized symmetric spaces. Cent. Eur. J. Math. 10 (2) (2012), 411–425. | DOI | MR
[7] Calvaruso, G.: Three-dimensional homogeneous generalized Ricci solitons. Mediterr. J. Math. 14 (2017), 1–21. | DOI | MR
[8] Calvaruso, G., Zaeim, A.: A complete classification of Ricci and Yamabe solitons of non-reductive homogeneous 4-spaces. J. Geom. Phys. 80 (2014), 15–25. | DOI | MR
[9] Fastenakels, J., Munteanu, M.I., Van Der Veken, J.: Constant angle surfaces in the Heisenberg group. J. Acta Math. 27 (4) (2011), 747–756. | MR
[10] Gadea, P.M., Oubina, J.A.: Reductive homogeneous pseudo-Riemannian manifolds. Monatsh. Math. 124 (1997), 17–34. | DOI | MR
[11] Gadea, P.M., Oubina, J.A.: Homogeneous Lorentzian structures on the oscillator groups. Arch. Math. (Basel) 73 (1999), 311–320. | DOI | MR
[12] Gil-Medrano, O., Hurtado, A.: Spacelike energy of timelike unit vector fields on a Lorentzian manifold. J. Geom. Phys. 51 (2004), 82–100. | DOI | MR
[13] Gray, A.: Einstein-like manifolds which are not Einstein. Geom. Dedicata 7 (1978), 259–280. | DOI | MR | Zbl
[14] Nasehi, M., Aghasi, M.: On the geometrical properties of hypercomplex four-dimensional Lorentzian Lie groups. to appear in Georgian Math. J. | MR
[15] Nasehi, M., Aghasi, M.: On the geometry of para-hypercomplex 4-dimensional Lie groups. J. Geom. Phys. 132 (2018), 230–238. | DOI | MR
[16] Nasehi, M., Aghasi, M.: On the geometry of some solvable extensions of the Heisenberg group. Czechoslovak Math. J. 68 (3) (2018), 723–740. | DOI | MR
[17] Nurowski, P., Randall, M.: Generalized Ricci solitons. J. Geom. Anal. 26 (2) (2016), 1280–1345. | DOI | MR
[18] Rahmani, N., Rahmani, S.: Structures homogenes lorentziennes sur le groupe de Heisenberg group I. J. Geom. Phys. 13 (1994), 254–258. | DOI | MR
[19] Rahmani, N., Rahmani, S.: Lorentzian geometry of the Heisenberg group. Geom. Dedicata 118 (2006), 133–140. | DOI | MR
[20] Rahmani, S.: Metriques de Lorentz sur les groupes de Lie unimodulaires, de dimension trois. J. Geom. Phys. 9 (3) (1992), 295–302, (French). | DOI | MR
[21] Tricerri, F., Vanhecke, L.: Homogeneous structures on Riemannian manifolds. Cambridge University Press, 1983. | MR
Cité par Sources :