Growth of weighted volume and some applications
Archivum mathematicum, Tome 56 (2020) no. 1, pp. 1-10 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We define cut-off functions in order to allow higher growth for Dirichlet energy. Our results are generalizations of the classical Cheng-Yau’s growth conditions of parabolicity. Finally we give some applications to the function theory of Kähler and quaternionic-Kähler manifolds.
We define cut-off functions in order to allow higher growth for Dirichlet energy. Our results are generalizations of the classical Cheng-Yau’s growth conditions of parabolicity. Finally we give some applications to the function theory of Kähler and quaternionic-Kähler manifolds.
DOI : 10.5817/AM2020-1-1
Classification : 53C20, 53C21
Keywords: volume growth; parabolic manifolds; weighted parabolic manifolds
@article{10_5817_AM2020_1_1,
     author = {Milijevi\'c, Mirjana and Yapu, Luis P.},
     title = {Growth of weighted volume and some applications},
     journal = {Archivum mathematicum},
     pages = {1--10},
     year = {2020},
     volume = {56},
     number = {1},
     doi = {10.5817/AM2020-1-1},
     mrnumber = {4075883},
     zbl = {07177875},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2020-1-1/}
}
TY  - JOUR
AU  - Milijević, Mirjana
AU  - Yapu, Luis P.
TI  - Growth of weighted volume and some applications
JO  - Archivum mathematicum
PY  - 2020
SP  - 1
EP  - 10
VL  - 56
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2020-1-1/
DO  - 10.5817/AM2020-1-1
LA  - en
ID  - 10_5817_AM2020_1_1
ER  - 
%0 Journal Article
%A Milijević, Mirjana
%A Yapu, Luis P.
%T Growth of weighted volume and some applications
%J Archivum mathematicum
%D 2020
%P 1-10
%V 56
%N 1
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2020-1-1/
%R 10.5817/AM2020-1-1
%G en
%F 10_5817_AM2020_1_1
Milijević, Mirjana; Yapu, Luis P. Growth of weighted volume and some applications. Archivum mathematicum, Tome 56 (2020) no. 1, pp. 1-10. doi: 10.5817/AM2020-1-1

[1] Cheng, S.Y., Yau, S.T.: Differential equations on Riemannian manifolds and their geometric applications. Comm. Pure Appl. Math. 28 (3) (1975), 333–354. | DOI | MR | Zbl

[2] Corlette, K.: Archimedean superrigidity and hyperbolic geometry. Ann. of Math. (2) 135 (1) (1992), 165–182. | DOI | MR

[3] Greene, R.E., Wu, H.: Function theory on manifolds which possesses a pole. Lecture Notes in Math., vol. 699, Springer-Verlag, Berlin and New York, 1979. | DOI | MR

[4] Grigoryan, A.A.: On the existence of a Green function on a manifold. Uspekhi Mat. Nauk 38 (1983), 161–162, (Russian), English translation: Russian Math. Surveys 38 (1983), no. 1, 190–191. | MR

[6] Grigoryan, A.A.: Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. Bull. Amer. Math. Soc. 36 (2) (1999), 135–249. | DOI | MR

[7] Hua, B., Liu, S., Xia, C.: Liouville theorems for f-harmonic maps into Hadamard Spaces. Pacific J. Math. 290 (2017), 381–402. | DOI | MR

[8] Jost, J.: Riemannian geometry and geometric analysis. Springer, Berlin, 2017. | MR

[9] Karp, L.: Subharmonic functions, harmonic mappings and isometric immersions. Seminar on Differential Geometry (Yau, S.T., ed.), Ann. Math. Stud. 102, Princeton, 1982.

[10] Kong, S., Li, P., Zhou, D.: Spectrum of the Laplacian on Quaternionic Kähler manifolds. J. Differential Geom. 78 92) (2008), 295–332. | DOI | MR

[11] Lam, K-H.: Spectrum of the Laplacian on manifolds with Spin(9) holonomy. Math. Res. Lett. 15 (6) (2018), 1167–1186. | DOI | MR

[12] Li, P.: On the structure of complete Kähler manifolds with nonnegative curvature near infinity. Invent. Math. 99 (1990), 579–600. | DOI | MR

[13] Li, P.: Curvature and function theory on Riemannian manifolds. Surveys in Differential Geometry, vol. 7, International Press, Cambridge, 2002, Papers dedicated to Atiyah, Bott, Hirzebruch, and Singer, pp. 375–432.

[14] Munteanu, O., Wang, J.: Kähler manifolds with real holomorphic vector fields. Math. Ann. 363 (2015), 893–911. | DOI | MR

[15] Rigolli, M., Setti, A.: Liouville type theorems for $\phi $ subharmonic functions. Rev. Mat. Iberoamerican 17 (2001), 471–521. | DOI | MR

[16] Ruppenthal, J.: Parabolicity of the regular locus of complex varieties. Proc. Amer. Math. Soc. 144 (2016), 225–233. | DOI | MR

[17] Sampson, J.H.: Applications to harmonic maps to Kähler geometry. Complex differential geometry and nonlinear differential equation, Amer. Math. Soc., Providence, RI, Contemp. Math. ed., 1986. | MR

[18] Siu, Y.T.: The complex-analyticity of harmonic maps and the strong rigidity of compact Kähler manifold. Ann. of Math. (2) 112 (1) (1980), 73–111. | DOI | MR

[19] Tasayco, D., Zhou, D.: Uniqueness of grim hyperplanes for mean curvature flows. Arch. Math. (Basel) 109 (2) (2017), 191–200. | DOI | MR

[20] Varopoulos, N.Th.: Potential theory and diffusion of Riemannian manifolds. Conference on Harmonic Analysis in honor of Antoni Zygmund, vol. I, II, Wadsworth Math. Ser., Wadsworth, Belmont, Calif., 1983, pp. 821–837. | MR

[21] Vieira, M.: Harmonic forms on manifolds with non-negative Bakry-Émery-Ricci curvature. Arch. Math. (Basel) 101 (2013), 581–590. | DOI | MR

Cité par Sources :