Keywords: Vertex algebras; cohomology
@article{10_5817_AM2019_5_341,
author = {Zuevsky, Alexander},
title = {Sewn sphere cohomologies for vertex algebras},
journal = {Archivum mathematicum},
pages = {341--349},
year = {2019},
volume = {55},
number = {5},
doi = {10.5817/AM2019-5-341},
mrnumber = {4057930},
zbl = {07144748},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2019-5-341/}
}
Zuevsky, Alexander. Sewn sphere cohomologies for vertex algebras. Archivum mathematicum, Tome 55 (2019) no. 5, pp. 341-349. doi: 10.5817/AM2019-5-341
[1] Frenkel, I.B., Huang, Y.-Z., Lepowsky, J.: On axiomatic approaches to vertex operator algebras and modules. Mem. Amer. Math. Soc. 494 (1993), viii+64 pp. | MR | Zbl
[2] Frenkel, I.B., Lepowsky, J., Meurman, A.: Vertex operator algebras and the Monster. Pure and Appl. Math., vol. 134, Academic Press, New York, 1988. | MR | Zbl
[3] Fuks, D.B.: Cohomology of infinite-dimensional Lie algebras. Contemporary Soviet Mathematic, Consultunt Bureau, New York, 1986. | MR | Zbl
[4] Galaev, A.S.: Comparison of approaches to characteristic classes of foliations. arXiv:1709.05888.
[5] Huang, Y.-Zh.: A cohomology theory of grading-restricted vertex algebras. Comm. Math. Phys. 327 (1) (2014), 279–307. | DOI | MR
[6] Kac, V.: Vertex Operator Algebras for Beginners. University Lecture Series, vol. 10, AMS, Providence, 1998. | MR
[7] Yamada, A.: Precise variational formulas for abelian differentials. Kodai Math. J. 3 (1980), 114–143. | DOI | MR
[8] Zhu, Y.: Modular invariance of characters of vertex operator algebras. J. Amer. Math. Soc. 9 (1996), 237–302. | DOI | MR | Zbl
Cité par Sources :