Sewn sphere cohomologies for vertex algebras
Archivum mathematicum, Tome 55 (2019) no. 5, pp. 341-349 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We define sewn elliptic cohomologies for vertex algebras by sewing procedure for coboundary operators.
We define sewn elliptic cohomologies for vertex algebras by sewing procedure for coboundary operators.
DOI : 10.5817/AM2019-5-341
Classification : 17B69, 53C12, 57R20
Keywords: Vertex algebras; cohomology
@article{10_5817_AM2019_5_341,
     author = {Zuevsky, Alexander},
     title = {Sewn sphere cohomologies for vertex algebras},
     journal = {Archivum mathematicum},
     pages = {341--349},
     year = {2019},
     volume = {55},
     number = {5},
     doi = {10.5817/AM2019-5-341},
     mrnumber = {4057930},
     zbl = {07144748},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2019-5-341/}
}
TY  - JOUR
AU  - Zuevsky, Alexander
TI  - Sewn sphere cohomologies for vertex algebras
JO  - Archivum mathematicum
PY  - 2019
SP  - 341
EP  - 349
VL  - 55
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2019-5-341/
DO  - 10.5817/AM2019-5-341
LA  - en
ID  - 10_5817_AM2019_5_341
ER  - 
%0 Journal Article
%A Zuevsky, Alexander
%T Sewn sphere cohomologies for vertex algebras
%J Archivum mathematicum
%D 2019
%P 341-349
%V 55
%N 5
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2019-5-341/
%R 10.5817/AM2019-5-341
%G en
%F 10_5817_AM2019_5_341
Zuevsky, Alexander. Sewn sphere cohomologies for vertex algebras. Archivum mathematicum, Tome 55 (2019) no. 5, pp. 341-349. doi: 10.5817/AM2019-5-341

[1] Frenkel, I.B., Huang, Y.-Z., Lepowsky, J.: On axiomatic approaches to vertex operator algebras and modules. Mem. Amer. Math. Soc. 494 (1993), viii+64 pp. | MR | Zbl

[2] Frenkel, I.B., Lepowsky, J., Meurman, A.: Vertex operator algebras and the Monster. Pure and Appl. Math., vol. 134, Academic Press, New York, 1988. | MR | Zbl

[3] Fuks, D.B.: Cohomology of infinite-dimensional Lie algebras. Contemporary Soviet Mathematic, Consultunt Bureau, New York, 1986. | MR | Zbl

[4] Galaev, A.S.: Comparison of approaches to characteristic classes of foliations. arXiv:1709.05888.

[5] Huang, Y.-Zh.: A cohomology theory of grading-restricted vertex algebras. Comm. Math. Phys. 327 (1) (2014), 279–307. | DOI | MR

[6] Kac, V.: Vertex Operator Algebras for Beginners. University Lecture Series, vol. 10, AMS, Providence, 1998. | MR

[7] Yamada, A.: Precise variational formulas for abelian differentials. Kodai Math. J. 3 (1980), 114–143. | DOI | MR

[8] Zhu, Y.: Modular invariance of characters of vertex operator algebras. J. Amer. Math. Soc. 9 (1996), 237–302. | DOI | MR | Zbl

Cité par Sources :