On the uniform perfectness of groups of bundle homeomorphisms
Archivum mathematicum, Tome 55 (2019) no. 5, pp. 333-339 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Groups of homeomorphisms related to locally trivial bundles are studied. It is shown that these groups are perfect. Moreover if the homeomorphism isotopy group of the base is bounded then the bundle homeomorphism group of the total space is uniformly perfect.
Groups of homeomorphisms related to locally trivial bundles are studied. It is shown that these groups are perfect. Moreover if the homeomorphism isotopy group of the base is bounded then the bundle homeomorphism group of the total space is uniformly perfect.
DOI : 10.5817/AM2019-5-333
Classification : 55R10, 57S05, 58D05
Keywords: homeomorphism group; uniformly perfect; continuously perfect; bounded; locally trivial bundle
@article{10_5817_AM2019_5_333,
     author = {Rybicki, Tomasz},
     title = {On the uniform perfectness of groups of bundle homeomorphisms},
     journal = {Archivum mathematicum},
     pages = {333--339},
     year = {2019},
     volume = {55},
     number = {5},
     doi = {10.5817/AM2019-5-333},
     mrnumber = {4057929},
     zbl = {07144747},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2019-5-333/}
}
TY  - JOUR
AU  - Rybicki, Tomasz
TI  - On the uniform perfectness of groups of bundle homeomorphisms
JO  - Archivum mathematicum
PY  - 2019
SP  - 333
EP  - 339
VL  - 55
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2019-5-333/
DO  - 10.5817/AM2019-5-333
LA  - en
ID  - 10_5817_AM2019_5_333
ER  - 
%0 Journal Article
%A Rybicki, Tomasz
%T On the uniform perfectness of groups of bundle homeomorphisms
%J Archivum mathematicum
%D 2019
%P 333-339
%V 55
%N 5
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2019-5-333/
%R 10.5817/AM2019-5-333
%G en
%F 10_5817_AM2019_5_333
Rybicki, Tomasz. On the uniform perfectness of groups of bundle homeomorphisms. Archivum mathematicum, Tome 55 (2019) no. 5, pp. 333-339. doi: 10.5817/AM2019-5-333

[1] Anderson, R.D.: On homeomorphisms as products of a given homeomorphism and its inverse. Topology of 3-manifolds (M. Fort ed., ed.), Prentice-Hall, 1961, pp. 231–237. | MR

[2] Burago, D., Ivanov, S., Polterovich, L.: Conjugation invariant norms on groups of geometric origin. Adv. Stud. Pure Math. 52 (2008), 221–250, Groups of diffeomorphisms. | DOI | MR

[3] Edwards, R.D., Kirby, R.C.: Deformations of spaces of imbeddings. Ann. Math. (2) 93 (1971), 63–88. | DOI | MR

[4] Epstein, D.B.A.: The simplicity of certain groups of homeomorphisms. Compositio Math. 22 (2) (1970), 165–173. | MR

[5] Fisher, G.M.: On the group of all homeomorphisms of a manifold. Trans. Amer. Math. Soc. 97 (1960), 193–212. | DOI | MR

[6] Fukui, K., Imanishi, H.: On commutators of foliation preserving homeomorphisms. J. Math. Soc. Japan 51 (1) (1999), 227–236. | DOI | MR

[7] Kowalik, A., Rybicki, T.: On the homeomorphism groups on manifolds and their universal coverings. Cent. Eur. J. Math. 9 (2011), 1217–1231. | DOI | MR

[8] Lech, J., Michalik, I., Rybicki, T.: On the boundedness of equivariant homeomorphism groups. Opuscula Math. 38 (2018), 395–408. | DOI | MR

[9] Ling, W.: Factorizable groups of homeomorphisms. Compositio Math. 51 (1) (1984), 41–51. | MR

[10] Mather, J.N.: The vanishing of the homology of certain groups of homeomorphisms. Topology 10 (1971), 297–298. | DOI | MR

[11] McDuff, D.: The lattice of normal subgroups of the group of diffeomorphisms or homeomorphisms of an open manifold. J. London Math. Soc. (2) 18 (1978), 353–364. | DOI | MR

[12] Michalik, I., Rybicki, T.: On the structure of the commutator subgroup of certain homeomorphism groups. Topology Appl. 158 (2011), 1314–1324. | MR

[13] Munkres, J.: Elementary differential topology. Ann. Math. Studies, vol. 54, Princeton University Press, 1966. | MR

[14] Rybicki, T.: On commutators of equivariant homeomorphisms. Topology Appl. 154 (2007), 1561–1564. | DOI | MR

[15] Rybicki, T.: Boundedness of certain automorphism groups of an open manifold. Geom. Dedicata 151 (1) (2011), 175–186. | DOI | MR

[16] Rybicki, T.: Locally continuously perfect groups of homeomorphisms. Ann. Global Anal. Geom. 40 (2011), 191–202. | DOI | MR

[17] Siebenmann, L.C.: Deformation of homeomorphisms on stratified sets, 1, 2. 2, Comment. Math. Helv. 47 (1972), 123–163. | DOI | MR

Cité par Sources :