A note on the cohomology ring of the oriented Grassmann manifolds $\widetilde{G}_{n,4}$
Archivum mathematicum, Tome 55 (2019) no. 5, pp. 319-331
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We use known results on the characteristic rank of the canonical $4$–plane bundle over the oriented Grassmann manifold $\widetilde{G}_{n,4}$ to compute the generators of the $\mathbb{Z}_2$–cohomology groups $H^j(\widetilde{G}_{n,4})$ for $n=8,9,10,11$. Drawing from the similarities of these examples with the general description of the cohomology rings of $\widetilde{G}_{n,3}$ we conjecture some predictions.
DOI :
10.5817/AM2019-5-319
Classification :
55R25, 57R20, 57T15
Keywords: oriented Grassmann manifold; characteristic rank; Stiefel-Whitney class
Keywords: oriented Grassmann manifold; characteristic rank; Stiefel-Whitney class
@article{10_5817_AM2019_5_319,
author = {Rusin, Tom\'a\v{s}},
title = {A note on the cohomology ring of the oriented {Grassmann} manifolds $\widetilde{G}_{n,4}$},
journal = {Archivum mathematicum},
pages = {319--331},
publisher = {mathdoc},
volume = {55},
number = {5},
year = {2019},
doi = {10.5817/AM2019-5-319},
mrnumber = {4057928},
zbl = {07144746},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2019-5-319/}
}
TY - JOUR
AU - Rusin, Tomáš
TI - A note on the cohomology ring of the oriented Grassmann manifolds $\widetilde{G}_{n,4}$
JO - Archivum mathematicum
PY - 2019
SP - 319
EP - 331
VL - 55
IS - 5
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2019-5-319/
DO - 10.5817/AM2019-5-319
LA - en
ID - 10_5817_AM2019_5_319
ER -
%0 Journal Article
%A Rusin, Tomáš
%T A note on the cohomology ring of the oriented Grassmann manifolds $\widetilde{G}_{n,4}$
%J Archivum mathematicum
%D 2019
%P 319-331
%V 55
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2019-5-319/
%R 10.5817/AM2019-5-319
%G en
%F 10_5817_AM2019_5_319
Rusin, Tomáš. A note on the cohomology ring of the oriented Grassmann manifolds $\widetilde{G}_{n,4}$. Archivum mathematicum, Tome 55 (2019) no. 5, pp. 319-331. doi: 10.5817/AM2019-5-319
Cité par Sources :