A note on the cohomology ring of the oriented Grassmann manifolds $\widetilde{G}_{n,4}$
Archivum mathematicum, Tome 55 (2019) no. 5, pp. 319-331 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We use known results on the characteristic rank of the canonical $4$–plane bundle over the oriented Grassmann manifold $\widetilde{G}_{n,4}$ to compute the generators of the $\mathbb{Z}_2$–cohomology groups $H^j(\widetilde{G}_{n,4})$ for $n=8,9,10,11$. Drawing from the similarities of these examples with the general description of the cohomology rings of $\widetilde{G}_{n,3}$ we conjecture some predictions.
We use known results on the characteristic rank of the canonical $4$–plane bundle over the oriented Grassmann manifold $\widetilde{G}_{n,4}$ to compute the generators of the $\mathbb{Z}_2$–cohomology groups $H^j(\widetilde{G}_{n,4})$ for $n=8,9,10,11$. Drawing from the similarities of these examples with the general description of the cohomology rings of $\widetilde{G}_{n,3}$ we conjecture some predictions.
DOI : 10.5817/AM2019-5-319
Classification : 55R25, 57R20, 57T15
Keywords: oriented Grassmann manifold; characteristic rank; Stiefel-Whitney class
@article{10_5817_AM2019_5_319,
     author = {Rusin, Tom\'a\v{s}},
     title = {A note on the cohomology ring of the oriented {Grassmann} manifolds $\widetilde{G}_{n,4}$},
     journal = {Archivum mathematicum},
     pages = {319--331},
     year = {2019},
     volume = {55},
     number = {5},
     doi = {10.5817/AM2019-5-319},
     mrnumber = {4057928},
     zbl = {07144746},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2019-5-319/}
}
TY  - JOUR
AU  - Rusin, Tomáš
TI  - A note on the cohomology ring of the oriented Grassmann manifolds $\widetilde{G}_{n,4}$
JO  - Archivum mathematicum
PY  - 2019
SP  - 319
EP  - 331
VL  - 55
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2019-5-319/
DO  - 10.5817/AM2019-5-319
LA  - en
ID  - 10_5817_AM2019_5_319
ER  - 
%0 Journal Article
%A Rusin, Tomáš
%T A note on the cohomology ring of the oriented Grassmann manifolds $\widetilde{G}_{n,4}$
%J Archivum mathematicum
%D 2019
%P 319-331
%V 55
%N 5
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2019-5-319/
%R 10.5817/AM2019-5-319
%G en
%F 10_5817_AM2019_5_319
Rusin, Tomáš. A note on the cohomology ring of the oriented Grassmann manifolds $\widetilde{G}_{n,4}$. Archivum mathematicum, Tome 55 (2019) no. 5, pp. 319-331. doi: 10.5817/AM2019-5-319

[1] Basu, S., Chakraborty, P.: On the cohomology ring and upper characteristic rank of Grassmannian of oriented 3-planes. arXiv:1712.00284v1 [math.AT].

[2] Borel, A.: La cohomologie mod $2$ de certains espaces homogènes. Comment. Math. Helv. 27 (1953), 165–197. | DOI | MR

[3] Korbaš, J.: The cup-length of the oriented Grassmannians vs a new bound for zero-cobordant manifolds. Bull. Belg. Math. Soc. Simon Stevin 17 (2010), 69–81. | DOI | MR

[4] Korbaš, J., Rusin, T.: A note on the $\mathbb{Z}_2$-cohomology algebra of oriented Grassmann manifolds. Rend. Circ. Mat. Palermo, II. Ser. 65 (2016), 507–517. | MR

[5] Korbaš, J., Rusin, T.: On the cohomology of oriented Grassmann manifolds. Homology Homotopy Appl. 18 (2) (2016), 71–84. | DOI | MR

[6] Milnor, J., Stasheff, J.: Characteristic Classes. Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. | MR | Zbl

[7] Naolekar, A.C., Thakur, A.S.: Note on the characteristic rank of vector bundles. Math. Slovaca 64 (2014), 1525–1540. | DOI | MR

[8] Prvulović, B.I., Radovanović, M.: On the characteristic rank of vector bundles over oriented Grassmannians. Fundamenta Mathematicae 244 (2019), 167–190. | DOI | MR

[9] Stong, R.E.: Semicharacteristics of oriented Grassmannians. J. Pure Appl. Alg. 33 (1984), 97–103. | DOI | MR

Cité par Sources :