Keywords: integrability; superintegrability; classical mechanics; magnetic field; time-dependent integrals
@article{10_5817_AM2019_5_309,
author = {Kub\r{u}, Ond\v{r}ej and \v{S}nobl, Libor},
title = {Superintegrability and time-dependent integrals},
journal = {Archivum mathematicum},
pages = {309--318},
year = {2019},
volume = {55},
number = {5},
doi = {10.5817/AM2019-5-309},
mrnumber = {4057927},
zbl = {07144745},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2019-5-309/}
}
Kubů, Ondřej; Šnobl, Libor. Superintegrability and time-dependent integrals. Archivum mathematicum, Tome 55 (2019) no. 5, pp. 309-318. doi: 10.5817/AM2019-5-309
[1] Crampin, M.: Constants of the motion in Lagrangian mechanics. Internat. J. Theoret. Phys. 16 (10) (1977), 741–754. | DOI | MR
[2] Gubbiotti, G., Nucci, M.C.: Are all classical superintegrable systems in two-dimensional space linearizable?. J. Math. Phys. 58 (1) (2017), 14 pp., 012902. | DOI | MR
[3] Jovanović, B.: Symmetries of line bundles and Noether theorem for time-dependent nonholonomic systems. J. Geom. Mech. 10 (2) (2018), 173–187. | DOI | MR
[4] Lie, S.: Theorie der Transformationsgruppen, Teil I–III. Leipzig: Teubner, 1888, 1890, 1893.
[5] López, C., Martínez, E., Rañada, M.F.: Dynamical symmetries, non-Cartan symmetries and superintegrability of the $n$-dimensional harmonic oscillator. J. Phys. A 32 (7) (1999), 1241–1249. | DOI | MR
[6] Marchesiello, A., Šnobl, L.: Superintegrable 3D systems in a magnetic field corresponding to Cartesian separation of variables. J. Phys. A 50 (24) (2017), 24 pp., 245202. | DOI | MR
[7] Marchesiello, A., Šnobl, L.: An infinite family of maximally superintegrable systems in a magnetic field with higher order integrals. SIGMA Symmetry Integrability Geom. Methods Appl. 14 (092) (2018), 11 pp. | MR
[8] Mariwalla, K.H.: A complete set of integrals in nonrelativistic mechanics. J. Phys. A 13 (9) (1980), 289–293. | DOI | MR
[9] Nucci, M.C., Leach, P.G.L.: The harmony in the Kepler and related problems. J. Math. Phys. 42 (2) (2001), 746–764. | DOI | MR
[10] Olver, P.J.: Applications of Lie groups to differential equations. Graduate Texts in Mathematics, vol. 107, Springer-Verlag, New York, 1993, second edition. | MR
[11] Prince, G.: Toward a classification of dynamical symmetries in Lagrangian systems. Proceedings of the IUTAM-ISIMM symposium on modern developments in analytical mechanics, Vol. II (Torino, 1982, vol. 117, 1983, pp. 687–691. | MR
[12] Sarlet, W., Cantrijn, F.: Generalizations of Noether’s theorem in classical mechanics. SIAM Rev. 23 (4) (1981), 467–494. | DOI | MR | Zbl
[13] Sarlet, W., Cantrijn, F.: Higher-order Noether symmetries and constants of the motion. J. Phys. A 14 (2) (1981), 479–492. | DOI | MR | Zbl
Cité par Sources :