Superintegrability and time-dependent integrals
Archivum mathematicum, Tome 55 (2019) no. 5, pp. 309-318 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

While looking for additional integrals of motion of several minimally superintegrable systems in static electric and magnetic fields, we have realized that in some cases Lie point symmetries of Euler-Lagrange equations imply existence of explicitly time-dependent integrals of motion through Noether’s theorem. These integrals can be combined to get an additional time-independent integral for some values of the parameters of the considered systems, thus implying maximal superintegrability. Even for values of the parameters for which the systems don’t exhibit maximal superintegrability in the usual sense they allow a completely algebraic determination of the trajectories (including their time dependence).
While looking for additional integrals of motion of several minimally superintegrable systems in static electric and magnetic fields, we have realized that in some cases Lie point symmetries of Euler-Lagrange equations imply existence of explicitly time-dependent integrals of motion through Noether’s theorem. These integrals can be combined to get an additional time-independent integral for some values of the parameters of the considered systems, thus implying maximal superintegrability. Even for values of the parameters for which the systems don’t exhibit maximal superintegrability in the usual sense they allow a completely algebraic determination of the trajectories (including their time dependence).
DOI : 10.5817/AM2019-5-309
Classification : 37J15, 37J35
Keywords: integrability; superintegrability; classical mechanics; magnetic field; time-dependent integrals
@article{10_5817_AM2019_5_309,
     author = {Kub\r{u}, Ond\v{r}ej and \v{S}nobl, Libor},
     title = {Superintegrability and time-dependent integrals},
     journal = {Archivum mathematicum},
     pages = {309--318},
     year = {2019},
     volume = {55},
     number = {5},
     doi = {10.5817/AM2019-5-309},
     mrnumber = {4057927},
     zbl = {07144745},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2019-5-309/}
}
TY  - JOUR
AU  - Kubů, Ondřej
AU  - Šnobl, Libor
TI  - Superintegrability and time-dependent integrals
JO  - Archivum mathematicum
PY  - 2019
SP  - 309
EP  - 318
VL  - 55
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2019-5-309/
DO  - 10.5817/AM2019-5-309
LA  - en
ID  - 10_5817_AM2019_5_309
ER  - 
%0 Journal Article
%A Kubů, Ondřej
%A Šnobl, Libor
%T Superintegrability and time-dependent integrals
%J Archivum mathematicum
%D 2019
%P 309-318
%V 55
%N 5
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2019-5-309/
%R 10.5817/AM2019-5-309
%G en
%F 10_5817_AM2019_5_309
Kubů, Ondřej; Šnobl, Libor. Superintegrability and time-dependent integrals. Archivum mathematicum, Tome 55 (2019) no. 5, pp. 309-318. doi: 10.5817/AM2019-5-309

[1] Crampin, M.: Constants of the motion in Lagrangian mechanics. Internat. J. Theoret. Phys. 16 (10) (1977), 741–754. | DOI | MR

[2] Gubbiotti, G., Nucci, M.C.: Are all classical superintegrable systems in two-dimensional space linearizable?. J. Math. Phys. 58 (1) (2017), 14 pp., 012902. | DOI | MR

[3] Jovanović, B.: Symmetries of line bundles and Noether theorem for time-dependent nonholonomic systems. J. Geom. Mech. 10 (2) (2018), 173–187. | DOI | MR

[4] Lie, S.: Theorie der Transformationsgruppen, Teil I–III. Leipzig: Teubner, 1888, 1890, 1893.

[5] López, C., Martínez, E., Rañada, M.F.: Dynamical symmetries, non-Cartan symmetries and superintegrability of the $n$-dimensional harmonic oscillator. J. Phys. A 32 (7) (1999), 1241–1249. | DOI | MR

[6] Marchesiello, A., Šnobl, L.: Superintegrable 3D systems in a magnetic field corresponding to Cartesian separation of variables. J. Phys. A 50 (24) (2017), 24 pp., 245202. | DOI | MR

[7] Marchesiello, A., Šnobl, L.: An infinite family of maximally superintegrable systems in a magnetic field with higher order integrals. SIGMA Symmetry Integrability Geom. Methods Appl. 14 (092) (2018), 11 pp. | MR

[8] Mariwalla, K.H.: A complete set of integrals in nonrelativistic mechanics. J. Phys. A 13 (9) (1980), 289–293. | DOI | MR

[9] Nucci, M.C., Leach, P.G.L.: The harmony in the Kepler and related problems. J. Math. Phys. 42 (2) (2001), 746–764. | DOI | MR

[10] Olver, P.J.: Applications of Lie groups to differential equations. Graduate Texts in Mathematics, vol. 107, Springer-Verlag, New York, 1993, second edition. | MR

[11] Prince, G.: Toward a classification of dynamical symmetries in Lagrangian systems. Proceedings of the IUTAM-ISIMM symposium on modern developments in analytical mechanics, Vol. II (Torino, 1982, vol. 117, 1983, pp. 687–691. | MR

[12] Sarlet, W., Cantrijn, F.: Generalizations of Noether’s theorem in classical mechanics. SIAM Rev. 23 (4) (1981), 467–494. | DOI | MR | Zbl

[13] Sarlet, W., Cantrijn, F.: Higher-order Noether symmetries and constants of the motion. J. Phys. A 14 (2) (1981), 479–492. | DOI | MR | Zbl

Cité par Sources :