Keywords: tensor field; natural differential operator; Lie derivative; Yano-Ako operator
@article{10_5817_AM2019_5_289,
author = {Jany\v{s}ka, Josef},
title = {Remarks on natural differential operators with tensor fields},
journal = {Archivum mathematicum},
pages = {289--308},
year = {2019},
volume = {55},
number = {5},
doi = {10.5817/AM2019-5-289},
mrnumber = {4057926},
zbl = {07144744},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2019-5-289/}
}
Janyška, Josef. Remarks on natural differential operators with tensor fields. Archivum mathematicum, Tome 55 (2019) no. 5, pp. 289-308. doi: 10.5817/AM2019-5-289
[1] Čap, A., Slovák, J.: On multilinear operators commuting with Lie derivatives. Ann. Global Anal. Geom. 13 (1995), 251–279. | DOI | MR
[2] Frölicher, A., Nijenhuis, A.: Theory of vector-valued differential forms, I, II. Nederl. Akad. Wetensch. Proc. Ser. A 59 (1956), 338–350, 351–359. | DOI | MR
[3] Kolář, I., Michor, P.W., Slovák, J.: Natural Operations in Differential Geometry. Springer–Verlag, 1993. | MR
[4] Krupka, D., Janyška, J.: Lectures on Differential Invariants. Folia Fac. Sci. Nat. Univ. Purkynianae Brunensis, Brno, 1990. | MR
[5] Salimov, A.: On operators associated with tensor fields. J. Geom. 99 (2010), 107–145, DOI: 10.1007/s00022-010-0059-6. | DOI | MR
[6] Schouten, J.A.: On the differential operators of first order in tensor calculus. Rapport ZA 1953-012, Math. Centrum Amsterdam (1953), 6 pp. | MR
[7] Schouten, J.A.: Ricci-Calculus: An Introduction to Tensor Analysis and Its Geometrical Applications. 2nd ed., Springer–Verlag Berlin, Heidelberg, 1954. | MR
[8] Yano, K., Ako, M.: On certain operators associated with tensor fields. Kodai Math. Sem. Rep. 20 (1968), 414–436. | DOI | MR
Cité par Sources :