Homogeneous Randers spaces admitting just two homogeneous geodesics
Archivum mathematicum, Tome 55 (2019) no. 5, pp. 281-288 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The existence of a homogeneous geodesic in homogeneous Finsler manifolds was investigated and positively answered in previous papers. It is conjectured that this result can be improved, namely that any homogeneous Finsler manifold admits at least two homogenous geodesics. Examples of homogeneous Randers manifolds admitting just two homogeneous geodesics are presented.
The existence of a homogeneous geodesic in homogeneous Finsler manifolds was investigated and positively answered in previous papers. It is conjectured that this result can be improved, namely that any homogeneous Finsler manifold admits at least two homogenous geodesics. Examples of homogeneous Randers manifolds admitting just two homogeneous geodesics are presented.
DOI : 10.5817/AM2019-5-281
Classification : 53C22, 53C30, 53C60
Keywords: homogeneous space; Finsler space; Randers space; homogeneous geodesic
@article{10_5817_AM2019_5_281,
     author = {Du\v{s}ek, Zden\v{e}k},
     title = {Homogeneous {Randers} spaces admitting just two homogeneous geodesics},
     journal = {Archivum mathematicum},
     pages = {281--288},
     year = {2019},
     volume = {55},
     number = {5},
     doi = {10.5817/AM2019-5-281},
     mrnumber = {4057925},
     zbl = {07144743},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2019-5-281/}
}
TY  - JOUR
AU  - Dušek, Zdeněk
TI  - Homogeneous Randers spaces admitting just two homogeneous geodesics
JO  - Archivum mathematicum
PY  - 2019
SP  - 281
EP  - 288
VL  - 55
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2019-5-281/
DO  - 10.5817/AM2019-5-281
LA  - en
ID  - 10_5817_AM2019_5_281
ER  - 
%0 Journal Article
%A Dušek, Zdeněk
%T Homogeneous Randers spaces admitting just two homogeneous geodesics
%J Archivum mathematicum
%D 2019
%P 281-288
%V 55
%N 5
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2019-5-281/
%R 10.5817/AM2019-5-281
%G en
%F 10_5817_AM2019_5_281
Dušek, Zdeněk. Homogeneous Randers spaces admitting just two homogeneous geodesics. Archivum mathematicum, Tome 55 (2019) no. 5, pp. 281-288. doi: 10.5817/AM2019-5-281

[1] Bao, D., Chern, S.-S., Shen, Z.: An Introduction to Riemann-Finsler Geometry. Springer Science+Business Media, New York, 2000. | MR | Zbl

[2] Deng, S.: Homogeneous Finsler Spaces. Springer Science+Business Media, New York, 2012. | MR

[3] Dušek, Z.: Geodesic graphs in homogeneous Randers spaces. Comment. Math. Univ. Carolinae, to appear.

[4] Dušek, Z.: The affine approach to homogeneous geodesics in homogeneous Finsler spaces. Arch. Math. (Brno) 54 (5) (2018), 257–263. | DOI | MR

[5] Dušek, Z.: The existence of homogeneous geodesics in special homogeneous Finsler spaces. Matematički Vesnik 71 (1–2) (2019), 16–22. | MR

[6] Kowalski, O., Nikčević, S., Vlášek, Z.: Homogeneous geodesics in homogeneous Riemannian manifolds - Examples. Preprint Reihe Mathematik, TU Berlin, No. 665/2000. | MR

[7] Kowalski, O., Szenthe, J.: On the existence of homogeneous geodesics in homogeneous Riemannian manifolds. Geom. Dedicata 84 (2001), 331–332. | DOI | MR

[8] Kowalski, O., Vanhecke, L.: Riemannian manifolds with homogeneous geodesics. Boll. Un. Math. Ital. B (7) 5 (1991), 189–246. | MR | Zbl

[9] Kowalski, O., Vlášek, Z.: Homogeneous Riemannian manifolds with only one homogeneous geodesic. Publ. Math. Debrecen 62 (3–4) (2003), 437–446. | MR

[10] Latifi, D.: Homogeneous geodesics in homogeneous Finsler spaces. J. Geom. Phys. 57 (2007), 1421–1433. | DOI | MR

[11] Yan, Z., Deng, S.: Finsler spaces whose geodesics are orbits. Diff. Geom. Appl. 36 (2014), 1–23. | DOI | MR

[12] Yan, Z., Deng, S.: Existence of homogeneous geodesics on homogeneous Randers spaces. Houston J. Math. 44 (2) (2018), 481–493. | MR

[13] Yan, Z., Huang, L.: On the existence of homogeneous geodesic in homogeneous Finsler spaces. J. Geom. Phys. 124 (2018), 264–267. | DOI | MR

Cité par Sources :