Keywords: homogeneous space; Finsler space; Randers space; homogeneous geodesic
@article{10_5817_AM2019_5_281,
author = {Du\v{s}ek, Zden\v{e}k},
title = {Homogeneous {Randers} spaces admitting just two homogeneous geodesics},
journal = {Archivum mathematicum},
pages = {281--288},
year = {2019},
volume = {55},
number = {5},
doi = {10.5817/AM2019-5-281},
mrnumber = {4057925},
zbl = {07144743},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2019-5-281/}
}
Dušek, Zdeněk. Homogeneous Randers spaces admitting just two homogeneous geodesics. Archivum mathematicum, Tome 55 (2019) no. 5, pp. 281-288. doi: 10.5817/AM2019-5-281
[1] Bao, D., Chern, S.-S., Shen, Z.: An Introduction to Riemann-Finsler Geometry. Springer Science+Business Media, New York, 2000. | MR | Zbl
[2] Deng, S.: Homogeneous Finsler Spaces. Springer Science+Business Media, New York, 2012. | MR
[3] Dušek, Z.: Geodesic graphs in homogeneous Randers spaces. Comment. Math. Univ. Carolinae, to appear.
[4] Dušek, Z.: The affine approach to homogeneous geodesics in homogeneous Finsler spaces. Arch. Math. (Brno) 54 (5) (2018), 257–263. | DOI | MR
[5] Dušek, Z.: The existence of homogeneous geodesics in special homogeneous Finsler spaces. Matematički Vesnik 71 (1–2) (2019), 16–22. | MR
[6] Kowalski, O., Nikčević, S., Vlášek, Z.: Homogeneous geodesics in homogeneous Riemannian manifolds - Examples. Preprint Reihe Mathematik, TU Berlin, No. 665/2000. | MR
[7] Kowalski, O., Szenthe, J.: On the existence of homogeneous geodesics in homogeneous Riemannian manifolds. Geom. Dedicata 84 (2001), 331–332. | DOI | MR
[8] Kowalski, O., Vanhecke, L.: Riemannian manifolds with homogeneous geodesics. Boll. Un. Math. Ital. B (7) 5 (1991), 189–246. | MR | Zbl
[9] Kowalski, O., Vlášek, Z.: Homogeneous Riemannian manifolds with only one homogeneous geodesic. Publ. Math. Debrecen 62 (3–4) (2003), 437–446. | MR
[10] Latifi, D.: Homogeneous geodesics in homogeneous Finsler spaces. J. Geom. Phys. 57 (2007), 1421–1433. | DOI | MR
[11] Yan, Z., Deng, S.: Finsler spaces whose geodesics are orbits. Diff. Geom. Appl. 36 (2014), 1–23. | DOI | MR
[12] Yan, Z., Deng, S.: Existence of homogeneous geodesics on homogeneous Randers spaces. Houston J. Math. 44 (2) (2018), 481–493. | MR
[13] Yan, Z., Huang, L.: On the existence of homogeneous geodesic in homogeneous Finsler spaces. J. Geom. Phys. 124 (2018), 264–267. | DOI | MR
Cité par Sources :