Higher simple structure sets of lens spaces with the fundamental group of arbitrary order
Archivum mathematicum, Tome 55 (2019) no. 5, pp. 267-280
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Extending work of many authors we calculate the higher simple structure sets of lens spaces in the sense of surgery theory with the fundamental group of arbitrary order. As a corollary we also obtain a calculation of the simple structure sets of the products of lens spaces and spheres of dimension grater or equal to $3$.
Extending work of many authors we calculate the higher simple structure sets of lens spaces in the sense of surgery theory with the fundamental group of arbitrary order. As a corollary we also obtain a calculation of the simple structure sets of the products of lens spaces and spheres of dimension grater or equal to $3$.
DOI : 10.5817/AM2019-5-267
Classification : 57R65, 57S25
Keywords: fake lens space; higher structure set; $\rho $-invariant; surgery
@article{10_5817_AM2019_5_267,
     author = {Balko, L{\textquoteright}udov{\'\i}t and Macko, Tibor and Niepel, Martin and Rusin, Tom\'a\v{s}},
     title = {Higher simple structure sets of lens spaces with the fundamental group of arbitrary order},
     journal = {Archivum mathematicum},
     pages = {267--280},
     year = {2019},
     volume = {55},
     number = {5},
     doi = {10.5817/AM2019-5-267},
     mrnumber = {4057924},
     zbl = {07144742},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2019-5-267/}
}
TY  - JOUR
AU  - Balko, L’udovít
AU  - Macko, Tibor
AU  - Niepel, Martin
AU  - Rusin, Tomáš
TI  - Higher simple structure sets of lens spaces with the fundamental group of arbitrary order
JO  - Archivum mathematicum
PY  - 2019
SP  - 267
EP  - 280
VL  - 55
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2019-5-267/
DO  - 10.5817/AM2019-5-267
LA  - en
ID  - 10_5817_AM2019_5_267
ER  - 
%0 Journal Article
%A Balko, L’udovít
%A Macko, Tibor
%A Niepel, Martin
%A Rusin, Tomáš
%T Higher simple structure sets of lens spaces with the fundamental group of arbitrary order
%J Archivum mathematicum
%D 2019
%P 267-280
%V 55
%N 5
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2019-5-267/
%R 10.5817/AM2019-5-267
%G en
%F 10_5817_AM2019_5_267
Balko, L’udovít; Macko, Tibor; Niepel, Martin; Rusin, Tomáš. Higher simple structure sets of lens spaces with the fundamental group of arbitrary order. Archivum mathematicum, Tome 55 (2019) no. 5, pp. 267-280. doi: 10.5817/AM2019-5-267

[1] Balko, L’., Macko, T., Niepel, M., Rusin, T.: Higher simple structure sets of lens spaces with the fundamental group of order $2^K$. Topology Appl. 263 (2019), 299–320 (English). | MR

[2] Hambleton, I., Taylor, L.R.: A guide to the calculation of the surgery obstruction groups for finite groups. Surveys on surgery theory, Vol. 1, Ann. of Math. Stud., vol. 145, Princeton Univ. Press, Princeton, NJ, 2000, pp. 225–274. MR MR1747537 (2001e:19007) | MR

[3] López de Medrano, S.: Involutions on manifolds. Springer-Verlag, New York, 1971, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 59. MR MR0298698 (45 #7747) | MR

[4] Macko, T., Wegner, Ch.: On fake lens spaces with fundamental group of order a power of 2. Algebr. Geom. Topol. 9 (2009), no. 3, 1837–1883. MR 2550097 (2010k:57067) DOI:  | DOI | MR

[5] Macko, T., Wegner, Ch.: On the classification of fake lens spaces. Forum Math. 23 (2011), no. 5, 1053–1091. MR 2836378 DOI:  | DOI | DOI | MR

[6] Madsen, I., Milgram, R.J.: The classifying spaces for surgery and cobordism of manifolds. Annals of Mathematics Studies, vol. 92, Princeton University Press, Princeton, N.J., 1979. MR MR548575 (81b:57014) | MR

[7] Madsen, I., Rothenberg, M.: On the classification of ${G}$-spheres. II. PL automorphism groups. Math. Scand. 64 (1989), no. 2, 161–218. MR 91d:57024 | DOI | MR

[8] Quinn, F.: A geometric formulation of surgery. Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969), Markham, Chicago, Ill., 1970, pp. 500–511. MR 43 #8087 | MR

[9] Wall, C.T.C.: Surgery on compact manifolds. second ed., Mathematical Surveys and Monographs, vol. 69, American Mathematical Society, Providence, RI, 1999, Edited and with a foreword by A. A. Ranicki. MR MR1687388 (2000a:57089) | MR

Cité par Sources :