$\Delta $-weak character amenability of certain Banach algebras
Archivum mathematicum, Tome 55 (2019) no. 4, pp. 239-247 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we investigate $\Delta $-weak character amenability of certain Banach algebras such as projective tensor product $A\widehat{\otimes }B$ and Lau product $A\times _{\theta }B$, where $A$ and $B$ are two arbitrary Banach algebras and $\theta \in \Delta (B)$, the character space of $B$. We also investigate $\Delta $-weak character amenability of abstract Segal algebras and module extension Banach algebras.
In this paper we investigate $\Delta $-weak character amenability of certain Banach algebras such as projective tensor product $A\widehat{\otimes }B$ and Lau product $A\times _{\theta }B$, where $A$ and $B$ are two arbitrary Banach algebras and $\theta \in \Delta (B)$, the character space of $B$. We also investigate $\Delta $-weak character amenability of abstract Segal algebras and module extension Banach algebras.
DOI : 10.5817/AM2019-4-239
Classification : 46H25, 46M10
Keywords: Banach algebra; $\Delta $-weak approximate identit; $\Delta $-weak character amenability
@article{10_5817_AM2019_4_239,
     author = {Sadeghi, Hamid},
     title = {$\Delta $-weak character amenability of certain {Banach} algebras},
     journal = {Archivum mathematicum},
     pages = {239--247},
     year = {2019},
     volume = {55},
     number = {4},
     doi = {10.5817/AM2019-4-239},
     mrnumber = {4038359},
     zbl = {07144739},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2019-4-239/}
}
TY  - JOUR
AU  - Sadeghi, Hamid
TI  - $\Delta $-weak character amenability of certain Banach algebras
JO  - Archivum mathematicum
PY  - 2019
SP  - 239
EP  - 247
VL  - 55
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2019-4-239/
DO  - 10.5817/AM2019-4-239
LA  - en
ID  - 10_5817_AM2019_4_239
ER  - 
%0 Journal Article
%A Sadeghi, Hamid
%T $\Delta $-weak character amenability of certain Banach algebras
%J Archivum mathematicum
%D 2019
%P 239-247
%V 55
%N 4
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2019-4-239/
%R 10.5817/AM2019-4-239
%G en
%F 10_5817_AM2019_4_239
Sadeghi, Hamid. $\Delta $-weak character amenability of certain Banach algebras. Archivum mathematicum, Tome 55 (2019) no. 4, pp. 239-247. doi: 10.5817/AM2019-4-239

[1] Alaghmandan, M., Nasr-Isfahani, R., Nemati, M.: Character amenability and contractibility of abstract Segal algebras. Bull. Austral. Math. Soc. 82 (2010), 274–281. | DOI | MR

[2] Burnham, J.T.: Closed ideals in subalgebras of Banach algebras, I. Proc. Amer. Math. Soc. 32 (1972), 551–555. | DOI | MR

[3] Hu, Z., Sangani Monfared, M., Traynor, T.: On character amenable Banach algebras. Studia Math. 193 (209), 53–78. | DOI | MR

[4] Jones, C.A., Lahr, C.D.: Weak and norm approximate identities. Pacific J. Math. 72 (1977), 99–104. | DOI | MR

[5] Kaniuth, E.: A course in commutative Banach algebras. Graduate Texts in Mmathematics, Springer Verlag, 2009. | MR

[6] Kaniuth, E., Lau, A.T., Pym, J.: On $\varphi $-amenability of Banach algebras. Math. Proc. Cambridge Philos. Soc. 144 (2008), 85–96. | DOI | MR

[7] Laali, J., Fozoun, M.: On $\Delta $-weak $\phi $-amenability of Banach algebras. Politehn. Univ. Bucharest Sci. Bull. Ser. A, Appl. Math. Phys. 77 (2015), 165–176. | MR

[8] Lau, A.T.: Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups. Fund. Math. 118 (1983), 161–175. | DOI | MR | Zbl

[9] Monfared, M.S.: On certain products of Banach algebras with application to harmonic analysis. Studia Math. 178 (2007), 277–294. | DOI | MR

[10] Monfared, M.S.: Character amenability of Banach algebras. Math. Proc. Cambridge Philos. Soc. 144 (2008), 697–706. | DOI | MR

[11] Nasr-Isfahani, R., Nemati, M.: Essential character amenability of Banach algebras. Bull. Aust. Math. Soc. 84 (2011), 372–386. | DOI | MR

[12] Samea, H.: Essential amenability of abstract Segal algebras. Bull. Aust. Math. Soc. 79 (2009), 319–325. | DOI | MR

Cité par Sources :