Some algebraic and homological properties of Lipschitz algebras and their second duals
Archivum mathematicum, Tome 55 (2019) no. 4, pp. 211-224 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $(X,d)$ be a metric space and $\alpha >0$. We study homological properties and different types of amenability of Lipschitz algebras $\operatorname{Lip}_\alpha X$ and their second duals. Precisely, we first provide some basic properties of Lipschitz algebras, which are important for metric geometry to know how metric properties are reflected in simple properties of Lipschitz functions. Then we show that all of these properties are equivalent to either uniform discreteness or finiteness of $X$. Finally, some results concerning the character space and Arens regularity of Lipschitz algebras are provided.
Let $(X,d)$ be a metric space and $\alpha >0$. We study homological properties and different types of amenability of Lipschitz algebras $\operatorname{Lip}_\alpha X$ and their second duals. Precisely, we first provide some basic properties of Lipschitz algebras, which are important for metric geometry to know how metric properties are reflected in simple properties of Lipschitz functions. Then we show that all of these properties are equivalent to either uniform discreteness or finiteness of $X$. Finally, some results concerning the character space and Arens regularity of Lipschitz algebras are provided.
DOI : 10.5817/AM2019-4-211
Classification : 11J83, 46H05, 46J10
Keywords: amenability; Arens regularity; biprojectivity; biflatness; Lipschitz algebra; metric space
@article{10_5817_AM2019_4_211,
     author = {Abtahi, F. and Byabani, E. and Rejali, A.},
     title = {Some algebraic and homological properties of {Lipschitz} algebras and their second duals},
     journal = {Archivum mathematicum},
     pages = {211--224},
     year = {2019},
     volume = {55},
     number = {4},
     doi = {10.5817/AM2019-4-211},
     mrnumber = {40383556},
     zbl = {07144736},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2019-4-211/}
}
TY  - JOUR
AU  - Abtahi, F.
AU  - Byabani, E.
AU  - Rejali, A.
TI  - Some algebraic and homological properties of Lipschitz algebras and their second duals
JO  - Archivum mathematicum
PY  - 2019
SP  - 211
EP  - 224
VL  - 55
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2019-4-211/
DO  - 10.5817/AM2019-4-211
LA  - en
ID  - 10_5817_AM2019_4_211
ER  - 
%0 Journal Article
%A Abtahi, F.
%A Byabani, E.
%A Rejali, A.
%T Some algebraic and homological properties of Lipschitz algebras and their second duals
%J Archivum mathematicum
%D 2019
%P 211-224
%V 55
%N 4
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2019-4-211/
%R 10.5817/AM2019-4-211
%G en
%F 10_5817_AM2019_4_211
Abtahi, F.; Byabani, E.; Rejali, A. Some algebraic and homological properties of Lipschitz algebras and their second duals. Archivum mathematicum, Tome 55 (2019) no. 4, pp. 211-224. doi: 10.5817/AM2019-4-211

[1] Abtahi, F., Azizi, M., Rejali, A.: Character amenability of some intersections of Lipschitz algebras. Canad. Math. Bull. 60 (4) (2017), 673–689. | DOI | MR

[2] Alaghmandan, M., Nasr Isfahani, R., Nemati, M.: On $\phi -$contractibility of the Lebesgue-Fourier algebra of a locally compact group. Arch. Math. (Basel) 95 (2010), 373–379. | DOI | MR

[3] Bade, W.G., Curtis, Jr., P.C., Dales, H.G.: Amenability and weak amenability for Beurling and Lipschitz algebras. Proc. London Math. Soc. 55 (2) (1987), 359–377. | MR | Zbl

[4] Dales, H.G.: Banach algebras and automatic continuity. London Math. Soc. Mono-graphs, vol. 24, Clarendon Press, Oxford, 2000. | MR | Zbl

[5] Dashti, M., Nasr Isfahani, R., Soltani Renani, S.: Character amenability of Lipschitz algebras. Canad. Math. Bull. 57 (1) (2014), 37–41. | DOI | MR

[6] Ghahramani, F., Zhang, Y.: Pseudo-amenable and pseudo-contractible Banach algebras. Math. Proc. Cambridge Philos. Soc. 142 (1) (2007), 111–123. | DOI | MR

[7] Gourdeau, F.: Amenability of Banach algebras. Math. Proc. Cambridge Philos. Soc. 105 (2) (1989), 351–355. | DOI | MR

[8] Helemskii, A.Ya.: The homology of Banach and topological algebras. Kluwer Academic Publishers Group, Dordrecht, 1989. | MR

[9] Hu, Z., Monfared, M.S., Traynor, T.: On character amenable Banach algebras. Studia Math. 193 (1) (2009), 53–78. | DOI | MR

[10] Johnson, B.E.: Cohomology in Banach algebras. Mem. Amer. Math. Soc., vol. 127, 1972, pp. iii+96 pp. | MR | Zbl

[11] Johnson, J.A.: Banach spaces of Lipschitz functions and vector-valued Lipschitz functions. Trans. Amer. Math. Soc. 148 (1970), 147–169. | DOI | MR

[12] Kaniuth, E.: A course in commutative Banach algebras. Graduate Texts in Mathematics, Springer, New York, 2009. | MR

[13] Kaniuth, E., Lau, A.T., Pym, J.: On $\varphi -$amenability of Banach algebras. Math. Proc. Cambridge Philos. Soc. 144 (1) (2008), 85–96. | DOI | MR

[14] Loomis, L.H.: An introduction to abstract harmonic analysi. D. Van Nostrand Company, Inc., Toronto-New York-London, 1953. | MR

[15] Monfared, M.S.: Character amenability of Banach algebras. Math. Proc. Cambridge Philos. Soc. 144 (3) (2008), 697–706. | DOI | MR

[16] Runde, V.: Lectures on amenability. Lecture Notes in Mathematics, vol. 1774, Springer-Verlag, Berlin, 2002. | MR | Zbl

[17] Samei, E., Spronk, N., Stokke, R.: Biflatness and pseudo-amenability of Segal algebras. Canad. J. Math. 62 4) (2010), 845–869. | DOI | MR

[18] Sherbert, D.R.: Banach algebras of Lipschitz functions. Pacific J. Math. 13 (1963), 1387–1399. | DOI | MR | Zbl

[19] Sherbert, D.R.: The structure of ideals and point derivations in Banach algebras of Lipschitz functions. Trans. Amer. Math. Soc. 111 (1964), 240–272. | DOI | MR | Zbl

[20] Zhang, Y.: Weak amenability of a class of Banach algebras. Canad. Math. Bull. 44 (4) (2001), 504–508. | DOI | MR | Zbl

Cité par Sources :