Keywords: amenability; Arens regularity; biprojectivity; biflatness; Lipschitz algebra; metric space
@article{10_5817_AM2019_4_211,
author = {Abtahi, F. and Byabani, E. and Rejali, A.},
title = {Some algebraic and homological properties of {Lipschitz} algebras and their second duals},
journal = {Archivum mathematicum},
pages = {211--224},
year = {2019},
volume = {55},
number = {4},
doi = {10.5817/AM2019-4-211},
mrnumber = {40383556},
zbl = {07144736},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2019-4-211/}
}
TY - JOUR AU - Abtahi, F. AU - Byabani, E. AU - Rejali, A. TI - Some algebraic and homological properties of Lipschitz algebras and their second duals JO - Archivum mathematicum PY - 2019 SP - 211 EP - 224 VL - 55 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2019-4-211/ DO - 10.5817/AM2019-4-211 LA - en ID - 10_5817_AM2019_4_211 ER -
%0 Journal Article %A Abtahi, F. %A Byabani, E. %A Rejali, A. %T Some algebraic and homological properties of Lipschitz algebras and their second duals %J Archivum mathematicum %D 2019 %P 211-224 %V 55 %N 4 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2019-4-211/ %R 10.5817/AM2019-4-211 %G en %F 10_5817_AM2019_4_211
Abtahi, F.; Byabani, E.; Rejali, A. Some algebraic and homological properties of Lipschitz algebras and their second duals. Archivum mathematicum, Tome 55 (2019) no. 4, pp. 211-224. doi: 10.5817/AM2019-4-211
[1] Abtahi, F., Azizi, M., Rejali, A.: Character amenability of some intersections of Lipschitz algebras. Canad. Math. Bull. 60 (4) (2017), 673–689. | DOI | MR
[2] Alaghmandan, M., Nasr Isfahani, R., Nemati, M.: On $\phi -$contractibility of the Lebesgue-Fourier algebra of a locally compact group. Arch. Math. (Basel) 95 (2010), 373–379. | DOI | MR
[3] Bade, W.G., Curtis, Jr., P.C., Dales, H.G.: Amenability and weak amenability for Beurling and Lipschitz algebras. Proc. London Math. Soc. 55 (2) (1987), 359–377. | MR | Zbl
[4] Dales, H.G.: Banach algebras and automatic continuity. London Math. Soc. Mono-graphs, vol. 24, Clarendon Press, Oxford, 2000. | MR | Zbl
[5] Dashti, M., Nasr Isfahani, R., Soltani Renani, S.: Character amenability of Lipschitz algebras. Canad. Math. Bull. 57 (1) (2014), 37–41. | DOI | MR
[6] Ghahramani, F., Zhang, Y.: Pseudo-amenable and pseudo-contractible Banach algebras. Math. Proc. Cambridge Philos. Soc. 142 (1) (2007), 111–123. | DOI | MR
[7] Gourdeau, F.: Amenability of Banach algebras. Math. Proc. Cambridge Philos. Soc. 105 (2) (1989), 351–355. | DOI | MR
[8] Helemskii, A.Ya.: The homology of Banach and topological algebras. Kluwer Academic Publishers Group, Dordrecht, 1989. | MR
[9] Hu, Z., Monfared, M.S., Traynor, T.: On character amenable Banach algebras. Studia Math. 193 (1) (2009), 53–78. | DOI | MR
[10] Johnson, B.E.: Cohomology in Banach algebras. Mem. Amer. Math. Soc., vol. 127, 1972, pp. iii+96 pp. | MR | Zbl
[11] Johnson, J.A.: Banach spaces of Lipschitz functions and vector-valued Lipschitz functions. Trans. Amer. Math. Soc. 148 (1970), 147–169. | DOI | MR
[12] Kaniuth, E.: A course in commutative Banach algebras. Graduate Texts in Mathematics, Springer, New York, 2009. | MR
[13] Kaniuth, E., Lau, A.T., Pym, J.: On $\varphi -$amenability of Banach algebras. Math. Proc. Cambridge Philos. Soc. 144 (1) (2008), 85–96. | DOI | MR
[14] Loomis, L.H.: An introduction to abstract harmonic analysi. D. Van Nostrand Company, Inc., Toronto-New York-London, 1953. | MR
[15] Monfared, M.S.: Character amenability of Banach algebras. Math. Proc. Cambridge Philos. Soc. 144 (3) (2008), 697–706. | DOI | MR
[16] Runde, V.: Lectures on amenability. Lecture Notes in Mathematics, vol. 1774, Springer-Verlag, Berlin, 2002. | MR | Zbl
[17] Samei, E., Spronk, N., Stokke, R.: Biflatness and pseudo-amenability of Segal algebras. Canad. J. Math. 62 4) (2010), 845–869. | DOI | MR
[18] Sherbert, D.R.: Banach algebras of Lipschitz functions. Pacific J. Math. 13 (1963), 1387–1399. | DOI | MR | Zbl
[19] Sherbert, D.R.: The structure of ideals and point derivations in Banach algebras of Lipschitz functions. Trans. Amer. Math. Soc. 111 (1964), 240–272. | DOI | MR | Zbl
[20] Zhang, Y.: Weak amenability of a class of Banach algebras. Canad. Math. Bull. 44 (4) (2001), 504–508. | DOI | MR | Zbl
Cité par Sources :