On a decomposition of non-negative Radon measures
Archivum mathematicum, Tome 55 (2019) no. 4, pp. 203-210
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We establish a decomposition of non-negative Radon measures on $\mathbb{R}^{d}$ which extends that obtained by Strichartz [6] in the setting of $\alpha $-dimensional measures. As consequences, we deduce some well-known properties concerning the density of non-negative Radon measures. Furthermore, some properties of non-negative Radon measures having their Riesz potential in a Lebesgue space are obtained.
DOI :
10.5817/AM2019-4-203
Classification :
28A12, 28A33, 28A78, 42B25
Keywords: Bessel capacity; fractional maximal operator; Hausdorff measure; non-negative Radon measure; Riesz potential
Keywords: Bessel capacity; fractional maximal operator; Hausdorff measure; non-negative Radon measure; Riesz potential
@article{10_5817_AM2019_4_203,
author = {Kpata, B\'erenger Akon},
title = {On a decomposition of non-negative {Radon} measures},
journal = {Archivum mathematicum},
pages = {203--210},
publisher = {mathdoc},
volume = {55},
number = {4},
year = {2019},
doi = {10.5817/AM2019-4-203},
mrnumber = {4038355},
zbl = {07144735},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2019-4-203/}
}
TY - JOUR AU - Kpata, Bérenger Akon TI - On a decomposition of non-negative Radon measures JO - Archivum mathematicum PY - 2019 SP - 203 EP - 210 VL - 55 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2019-4-203/ DO - 10.5817/AM2019-4-203 LA - en ID - 10_5817_AM2019_4_203 ER -
Kpata, Bérenger Akon. On a decomposition of non-negative Radon measures. Archivum mathematicum, Tome 55 (2019) no. 4, pp. 203-210. doi: 10.5817/AM2019-4-203
Cité par Sources :