Keywords: Bessel capacity; fractional maximal operator; Hausdorff measure; non-negative Radon measure; Riesz potential
@article{10_5817_AM2019_4_203,
author = {Kpata, B\'erenger Akon},
title = {On a decomposition of non-negative {Radon} measures},
journal = {Archivum mathematicum},
pages = {203--210},
year = {2019},
volume = {55},
number = {4},
doi = {10.5817/AM2019-4-203},
mrnumber = {4038355},
zbl = {07144735},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2019-4-203/}
}
Kpata, Bérenger Akon. On a decomposition of non-negative Radon measures. Archivum mathematicum, Tome 55 (2019) no. 4, pp. 203-210. doi: 10.5817/AM2019-4-203
[1] Adams, D.R., Hedberg, L.I.: Function spaces and potential theory. Grundlehren der mathematischen Wissenschaften, vol. 314, Springer-Verlag, London-Berlin-Heidelberg-New York, 1996. | MR
[2] Dal Maso, G.: On the integral representation of certain local functionals. Ric. Mat. 32 (1) (1983), 85–113. | MR
[3] Falconner, K.J.: Fractal geometry. Wiley, New York, 1990. | MR
[4] Molter, U.M., Zuberman, L.: A fractal Plancherel theorem. Real Anal. Exchange 34 (1) (2008/2009), 69–86. | DOI | MR
[5] Phuc, N.C., Torrès, M.: Characterizations of the existence and removable singularities of divergence-measure vector fields. Indiana Univ. Math. J. 57 (4) (2008), 1573–1597. | DOI | MR
[6] Strichartz, R.S.: Fourier asymptotics of fractal measures. J. Funct. Anal. 89 (1990), 154–187. | DOI | MR
[7] Véron, L.: Elliptic equations involving measures. Handbook of Differential Equations: Stationary Partial Differential Equations, vol. 1, 2004, pp. 593–712. | MR
[8] Ziemer, W.P.: Weakly Differentiable Functions. Springer-Verlag, New York, 1989. | MR | Zbl
Cité par Sources :