On a decomposition of non-negative Radon measures
Archivum mathematicum, Tome 55 (2019) no. 4, pp. 203-210 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We establish a decomposition of non-negative Radon measures on $\mathbb{R}^{d}$ which extends that obtained by Strichartz [6] in the setting of $\alpha $-dimensional measures. As consequences, we deduce some well-known properties concerning the density of non-negative Radon measures. Furthermore, some properties of non-negative Radon measures having their Riesz potential in a Lebesgue space are obtained.
We establish a decomposition of non-negative Radon measures on $\mathbb{R}^{d}$ which extends that obtained by Strichartz [6] in the setting of $\alpha $-dimensional measures. As consequences, we deduce some well-known properties concerning the density of non-negative Radon measures. Furthermore, some properties of non-negative Radon measures having their Riesz potential in a Lebesgue space are obtained.
DOI : 10.5817/AM2019-4-203
Classification : 28A12, 28A33, 28A78, 42B25
Keywords: Bessel capacity; fractional maximal operator; Hausdorff measure; non-negative Radon measure; Riesz potential
@article{10_5817_AM2019_4_203,
     author = {Kpata, B\'erenger Akon},
     title = {On a decomposition of non-negative {Radon} measures},
     journal = {Archivum mathematicum},
     pages = {203--210},
     year = {2019},
     volume = {55},
     number = {4},
     doi = {10.5817/AM2019-4-203},
     mrnumber = {4038355},
     zbl = {07144735},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2019-4-203/}
}
TY  - JOUR
AU  - Kpata, Bérenger Akon
TI  - On a decomposition of non-negative Radon measures
JO  - Archivum mathematicum
PY  - 2019
SP  - 203
EP  - 210
VL  - 55
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2019-4-203/
DO  - 10.5817/AM2019-4-203
LA  - en
ID  - 10_5817_AM2019_4_203
ER  - 
%0 Journal Article
%A Kpata, Bérenger Akon
%T On a decomposition of non-negative Radon measures
%J Archivum mathematicum
%D 2019
%P 203-210
%V 55
%N 4
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2019-4-203/
%R 10.5817/AM2019-4-203
%G en
%F 10_5817_AM2019_4_203
Kpata, Bérenger Akon. On a decomposition of non-negative Radon measures. Archivum mathematicum, Tome 55 (2019) no. 4, pp. 203-210. doi: 10.5817/AM2019-4-203

[1] Adams, D.R., Hedberg, L.I.: Function spaces and potential theory. Grundlehren der mathematischen Wissenschaften, vol. 314, Springer-Verlag, London-Berlin-Heidelberg-New York, 1996. | MR

[2] Dal Maso, G.: On the integral representation of certain local functionals. Ric. Mat. 32 (1) (1983), 85–113. | MR

[3] Falconner, K.J.: Fractal geometry. Wiley, New York, 1990. | MR

[4] Molter, U.M., Zuberman, L.: A fractal Plancherel theorem. Real Anal. Exchange 34 (1) (2008/2009), 69–86. | DOI | MR

[5] Phuc, N.C., Torrès, M.: Characterizations of the existence and removable singularities of divergence-measure vector fields. Indiana Univ. Math. J. 57 (4) (2008), 1573–1597. | DOI | MR

[6] Strichartz, R.S.: Fourier asymptotics of fractal measures. J. Funct. Anal. 89 (1990), 154–187. | DOI | MR

[7] Véron, L.: Elliptic equations involving measures. Handbook of Differential Equations: Stationary Partial Differential Equations, vol. 1, 2004, pp. 593–712. | MR

[8] Ziemer, W.P.: Weakly Differentiable Functions. Springer-Verlag, New York, 1989. | MR | Zbl

Cité par Sources :