On a decomposition of non-negative Radon measures
Archivum mathematicum, Tome 55 (2019) no. 4, pp. 203-210.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We establish a decomposition of non-negative Radon measures on $\mathbb{R}^{d}$ which extends that obtained by Strichartz [6] in the setting of $\alpha $-dimensional measures. As consequences, we deduce some well-known properties concerning the density of non-negative Radon measures. Furthermore, some properties of non-negative Radon measures having their Riesz potential in a Lebesgue space are obtained.
DOI : 10.5817/AM2019-4-203
Classification : 28A12, 28A33, 28A78, 42B25
Keywords: Bessel capacity; fractional maximal operator; Hausdorff measure; non-negative Radon measure; Riesz potential
@article{10_5817_AM2019_4_203,
     author = {Kpata, B\'erenger Akon},
     title = {On a decomposition of non-negative {Radon} measures},
     journal = {Archivum mathematicum},
     pages = {203--210},
     publisher = {mathdoc},
     volume = {55},
     number = {4},
     year = {2019},
     doi = {10.5817/AM2019-4-203},
     mrnumber = {4038355},
     zbl = {07144735},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2019-4-203/}
}
TY  - JOUR
AU  - Kpata, Bérenger Akon
TI  - On a decomposition of non-negative Radon measures
JO  - Archivum mathematicum
PY  - 2019
SP  - 203
EP  - 210
VL  - 55
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2019-4-203/
DO  - 10.5817/AM2019-4-203
LA  - en
ID  - 10_5817_AM2019_4_203
ER  - 
%0 Journal Article
%A Kpata, Bérenger Akon
%T On a decomposition of non-negative Radon measures
%J Archivum mathematicum
%D 2019
%P 203-210
%V 55
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2019-4-203/
%R 10.5817/AM2019-4-203
%G en
%F 10_5817_AM2019_4_203
Kpata, Bérenger Akon. On a decomposition of non-negative Radon measures. Archivum mathematicum, Tome 55 (2019) no. 4, pp. 203-210. doi : 10.5817/AM2019-4-203. http://geodesic.mathdoc.fr/articles/10.5817/AM2019-4-203/

Cité par Sources :