On instances of Fox’s integral equation connection to the Riemann zeta function
Archivum mathematicum, Tome 55 (2019) no. 3, pp. 195-201.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider some applications of the singular integral equation of the second kind of Fox. Some new solutions to Fox’s integral equation are discussed in relation to number theory.
DOI : 10.5817/AM2019-3-195
Classification : 11L20, 42A38
Keywords: Fourier integrals; Fox’s integral equation; Riemann prime counting function
@article{10_5817_AM2019_3_195,
     author = {Patkowski, Alexander E.},
     title = {On instances of {Fox{\textquoteright}s} integral equation connection to the {Riemann} zeta function},
     journal = {Archivum mathematicum},
     pages = {195--201},
     publisher = {mathdoc},
     volume = {55},
     number = {3},
     year = {2019},
     doi = {10.5817/AM2019-3-195},
     mrnumber = {3994325},
     zbl = {07138662},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2019-3-195/}
}
TY  - JOUR
AU  - Patkowski, Alexander E.
TI  - On instances of Fox’s integral equation connection to the Riemann zeta function
JO  - Archivum mathematicum
PY  - 2019
SP  - 195
EP  - 201
VL  - 55
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2019-3-195/
DO  - 10.5817/AM2019-3-195
LA  - en
ID  - 10_5817_AM2019_3_195
ER  - 
%0 Journal Article
%A Patkowski, Alexander E.
%T On instances of Fox’s integral equation connection to the Riemann zeta function
%J Archivum mathematicum
%D 2019
%P 195-201
%V 55
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2019-3-195/
%R 10.5817/AM2019-3-195
%G en
%F 10_5817_AM2019_3_195
Patkowski, Alexander E. On instances of Fox’s integral equation connection to the Riemann zeta function. Archivum mathematicum, Tome 55 (2019) no. 3, pp. 195-201. doi : 10.5817/AM2019-3-195. http://geodesic.mathdoc.fr/articles/10.5817/AM2019-3-195/

Cité par Sources :