Keywords: Fourier integrals; Fox’s integral equation; Riemann prime counting function
@article{10_5817_AM2019_3_195,
author = {Patkowski, Alexander E.},
title = {On instances of {Fox{\textquoteright}s} integral equation connection to the {Riemann} zeta function},
journal = {Archivum mathematicum},
pages = {195--201},
year = {2019},
volume = {55},
number = {3},
doi = {10.5817/AM2019-3-195},
mrnumber = {3994325},
zbl = {07138662},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2019-3-195/}
}
TY - JOUR AU - Patkowski, Alexander E. TI - On instances of Fox’s integral equation connection to the Riemann zeta function JO - Archivum mathematicum PY - 2019 SP - 195 EP - 201 VL - 55 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2019-3-195/ DO - 10.5817/AM2019-3-195 LA - en ID - 10_5817_AM2019_3_195 ER -
Patkowski, Alexander E. On instances of Fox’s integral equation connection to the Riemann zeta function. Archivum mathematicum, Tome 55 (2019) no. 3, pp. 195-201. doi: 10.5817/AM2019-3-195
[1] Erdélyi, A. (ed.): Tables of Integral Transforms. vol. 1, McGraw-Hill, New York, 1954.
[2] Fox, C.: Applications of Mellin’s transformations to integral equations. Proc. Roy. Soc. London 39 (1933), 495–502. | MR
[3] Ivic, A.: Some identities of the Riemann zeta function II. Facta Univ. Ser. Math. Inform. 20 (2005), 1–8. | MR
[4] Paris, R.B., Kaminski, D.: Asymptotics and Mellin–Barnes Integrals. Cambridge University Press, 2001. | MR
[5] Titchmarsh, E.C.: Introduction to the Theory of Fourier Integrals. 2nd ed., Oxford University Press, Oxford, 1959. | MR
[6] Titchmarsh, E.C.: The theory of the Riemann zeta function. 2nd ed., Oxford University Press, 1986. | MR
[7] Zemyan, S.M.: The Classical Theory of Integral equations: A Concise Treatment. Birkhäuser, Boston, 2012. | MR
Cité par Sources :