On instances of Fox’s integral equation connection to the Riemann zeta function
Archivum mathematicum, Tome 55 (2019) no. 3, pp. 195-201 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider some applications of the singular integral equation of the second kind of Fox. Some new solutions to Fox’s integral equation are discussed in relation to number theory.
We consider some applications of the singular integral equation of the second kind of Fox. Some new solutions to Fox’s integral equation are discussed in relation to number theory.
DOI : 10.5817/AM2019-3-195
Classification : 11L20, 42A38
Keywords: Fourier integrals; Fox’s integral equation; Riemann prime counting function
@article{10_5817_AM2019_3_195,
     author = {Patkowski, Alexander E.},
     title = {On instances of {Fox{\textquoteright}s} integral equation connection to the {Riemann} zeta function},
     journal = {Archivum mathematicum},
     pages = {195--201},
     year = {2019},
     volume = {55},
     number = {3},
     doi = {10.5817/AM2019-3-195},
     mrnumber = {3994325},
     zbl = {07138662},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2019-3-195/}
}
TY  - JOUR
AU  - Patkowski, Alexander E.
TI  - On instances of Fox’s integral equation connection to the Riemann zeta function
JO  - Archivum mathematicum
PY  - 2019
SP  - 195
EP  - 201
VL  - 55
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2019-3-195/
DO  - 10.5817/AM2019-3-195
LA  - en
ID  - 10_5817_AM2019_3_195
ER  - 
%0 Journal Article
%A Patkowski, Alexander E.
%T On instances of Fox’s integral equation connection to the Riemann zeta function
%J Archivum mathematicum
%D 2019
%P 195-201
%V 55
%N 3
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2019-3-195/
%R 10.5817/AM2019-3-195
%G en
%F 10_5817_AM2019_3_195
Patkowski, Alexander E. On instances of Fox’s integral equation connection to the Riemann zeta function. Archivum mathematicum, Tome 55 (2019) no. 3, pp. 195-201. doi: 10.5817/AM2019-3-195

[1] Erdélyi, A. (ed.): Tables of Integral Transforms. vol. 1, McGraw-Hill, New York, 1954.

[2] Fox, C.: Applications of Mellin’s transformations to integral equations. Proc. Roy. Soc. London 39 (1933), 495–502. | MR

[3] Ivic, A.: Some identities of the Riemann zeta function II. Facta Univ. Ser. Math. Inform. 20 (2005), 1–8. | MR

[4] Paris, R.B., Kaminski, D.: Asymptotics and Mellin–Barnes Integrals. Cambridge University Press, 2001. | MR

[5] Titchmarsh, E.C.: Introduction to the Theory of Fourier Integrals. 2nd ed., Oxford University Press, Oxford, 1959. | MR

[6] Titchmarsh, E.C.: The theory of the Riemann zeta function. 2nd ed., Oxford University Press, 1986. | MR

[7] Zemyan, S.M.: The Classical Theory of Integral equations: A Concise Treatment. Birkhäuser, Boston, 2012. | MR

Cité par Sources :