Keywords: proximal gradient algorithm; proximal operator; demimetric mappings; inertial algorithm; viscosity approximation; Meir Keeler contraction; fixed point theory
@article{10_5817_AM2019_3_167,
author = {Jolaoso, L.O. and Abass, H.A. and Mewomo, O.T.},
title = {A viscosity-proximal gradient method with inertial extrapolation for solving certain minimization problems in {Hilbert} space},
journal = {Archivum mathematicum},
pages = {167--194},
year = {2019},
volume = {55},
number = {3},
doi = {10.5817/AM2019-3-167},
mrnumber = {3994324},
zbl = {07138661},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2019-3-167/}
}
TY - JOUR AU - Jolaoso, L.O. AU - Abass, H.A. AU - Mewomo, O.T. TI - A viscosity-proximal gradient method with inertial extrapolation for solving certain minimization problems in Hilbert space JO - Archivum mathematicum PY - 2019 SP - 167 EP - 194 VL - 55 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2019-3-167/ DO - 10.5817/AM2019-3-167 LA - en ID - 10_5817_AM2019_3_167 ER -
%0 Journal Article %A Jolaoso, L.O. %A Abass, H.A. %A Mewomo, O.T. %T A viscosity-proximal gradient method with inertial extrapolation for solving certain minimization problems in Hilbert space %J Archivum mathematicum %D 2019 %P 167-194 %V 55 %N 3 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2019-3-167/ %R 10.5817/AM2019-3-167 %G en %F 10_5817_AM2019_3_167
Jolaoso, L.O.; Abass, H.A.; Mewomo, O.T. A viscosity-proximal gradient method with inertial extrapolation for solving certain minimization problems in Hilbert space. Archivum mathematicum, Tome 55 (2019) no. 3, pp. 167-194. doi: 10.5817/AM2019-3-167
[1] Abass, H.A., Ogbuisi, F.U., Mewomo, O.T.: Common solution of split equilibrium problem and fixed point problem with no prior knowledge of operator norm. U.P.B. Sci. Bull., Series A 80 (1) (2018), 175–190. | MR
[2] Alvarez, F., Attouch, H.: An inertial proximal method for monotone operators via discretization of a nonlinear oscillator with damping. Set-Valued Anal. 9 (2001), 3–11. | DOI | MR
[3] Beck, A., Teboull, M.: Gradient-based algorithms with applications to signal-recovery problems. Convex optimization in signal processing and communications (Palomar, D., Elder, Y., eds.), Cambridge Univ. Press, Cambridge, 2010, pp. 42–88. | MR
[4] Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problem. SIAM J. Imaging Sci. 2 (1) (2009), 183–202. | DOI | MR
[5] Bot, R.I., Csetnek, E.R.: An inerial Tseng’s type proximal point algorithm for nonsmooth and nonconvex optimization problem. J. Optim. Theory Appl. 171 (2016), 600–616. | DOI | MR
[6] Bot, R.I., Csetnek, E.R., Laszlo, S.C.: An inertial forward-backward algorithm for the minimization of the sum of two nonconvex functions. EJCO 4 (2016), 3–25. | MR
[7] Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Problems 20 (2004), 103–120. | DOI | MR
[8] Cai, G., Shehu, Y.: An iterative algorithm for fixed point problem and convex minimization problem with applications. Fixed Point Theory and Appl. 2015 123 (2015), 18 pp. | MR
[9] Ceng, L.-C., Ansari, Q.H., Ya, J.-C.: Some iterative methods for finding fixed points and for solving constrained convex minimization problems. Nonlinear Anal. 74 (2011), 5286–5302. | DOI | MR
[10] Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 8 (2–4) (1994), 221–239. | DOI | MR | Zbl
[11] Chambolle, A., Dossal, C.: On the convergence of the iterates of the fast iterative shrinkage thresholding algorithm. J. Optim. Theory Appl. 166 (2015), 968–982. | DOI | MR
[12] Chan, R.H., Ma, S., Jang, J.F.: Inertial proximal ADMM for linearly constrained separable convex optimization. SIAM J. Imaging Sci. 8 (4) (2015), 2239–2267. | DOI | MR
[13] Combettes, P.L.: Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization 53 (2004), 475–504. | DOI | MR
[14] Combettes, P.L., Pesquet, J.-C.: Proximal Splitting Methods in Signal Processing. Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Springer, New York, 2011, pp. 185–212. | MR
[15] Fichera, G.: Problemi elastostatic con vincoli unilaterli: II Problema di signorini con ambigue condizioni al contorno. Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. I (8) 7 (1963/1964), 91–140. | MR
[16] Geobel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory. Cambridge Studies in Advanced Mathematics, vol. 28, Cambridge University Press, Cambridge, 1990. | MR
[17] Guo, Y., Cui, W.: Strong convergence and bounded perturbation resilence of a modified proximal gradient algorithm. J. Ineq. Appl. 2018 (2018). | DOI | MR
[18] Izuchukwu, C., Ugwunnadi, G.C., Mewomo, O.T., Khan, A.R., Abbas, M.: Proximal-type algorithms for split minimization problem in P-uniformly convex metric spaces. Numer. Algorithms (2018), | DOI | MR
[19] Jolaoso, L.O., Ogbuisi, F.U., Mewomo, O.T.: An iterative method for solving minimization, variational inequality and fixed point problems in reflexive Banach spaces. Adv. Pure Appl. Math. 9 (3) (2018), 167–183. | DOI | MR
[20] Jolaoso, L.O., Oyewole, K.O., Okeke, C.C., Mewomo, O.T.: A unified algorithm for solving split generalized mixed equilibrium problem and fixed point of nonspreading mapping in Hilbert space. Demonstratio Math. 51 (2018), 211–232. | DOI | MR
[21] Jolaoso, L.O., Taiwo, A., Alakoya, T.O., Mewomo, O.T.: A strong convergence theorem for solving variational inequalities using an inertial viscosity subgradient extragradient algorithm with self adaptive stepsize. Demonstratio Math. 52 (1) (2019), 183–203. | MR
[22] Lions, J.L., Stampacchia, G.: Variational inequalities. Comm. Pure Appl. Math. 20 (1967), 493–519. | DOI | MR | Zbl
[23] Lorenz, D., Pock, T.: An inertial forward-backward algorithm for monotone inclusions. J. Math. Imaging Vision 51 (2) (2015), 311–325. | DOI | MR
[24] Maingé, P.E.: Approximation methods for common fixed points of nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl. 325 (2007), 469–479. | DOI | MR
[25] Maingé, P.E.: Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization. Set-Valued Anal. 16 (2008), 899–912. | DOI | MR
[26] Martinez-Yanes, C., Xu, H.K.: Strong convergence of the CQ method for fixed-point iteration processes. Nonlinear Anal. 64 (2006), 2400–2411. | DOI | MR
[27] Meir, A., Keeler, E.: A theorem on contraction mappings. J. Math. Anal. Appl. 28 (1969), 326–329. | DOI | MR
[28] Mewomo, O.T., Ogbuisi, F.U.: Convergence analysis of iterative method for multiple set split feasibility problems in certain Banach spaces. Quaestiones Math. 41 (1) (2018), 129–148. | DOI | MR
[29] Moudafi, A.: Viscosity approximation method for fixed-points problems. J. Math. Anal. Appl. 241 (1) (2000), 46–55. | DOI | MR
[30] Moudafi, A., Oliny, M.: Convergence of a splitting inertial proximal method for monotone operators. J. Comput. Appl. Math. 155 (2003), 447–454. | DOI | MR
[31] Moudafi, A., Thakur, B.S.: Solving proximal split feasibility problems without prior knowledge of operator norms. Optim. Lett. 8 (7) (2014), 2099–2110. | DOI | MR
[32] Nesterov, Y.: A method for solving the convex programming problem with convergence rate $0(\frac{1}{k^2})$. Dokl. Akad. Nauk SSSR 269 (3) (1983), 543–547. | MR
[33] Ogbuisi, F.U., Mewomo, O.T.: On split generalized mixed equilibrium problems and fixed point problems with no prior knowledge of operator norm. J. Fixed Point Theory Appl. 19 (3) (2016), 2109–2128. | DOI | MR
[34] Ogbuisi, F.U., Mewomo, O.T.: Iterative solution of split variational inclusion problem in a real Banach space. Afrika Mat. (3) 28 (1–2) (2017), 295–309. | DOI | MR
[35] Ogbuisi, F.U., Mewomo, O.T.: Convergence analysis of common solution of certain nonlinear problems. Fixed Point Theory 19 (1) (2018), 335–358. | DOI | MR
[36] Okeke, C.C., Mewomo, O.T.: On split equilibrim problem, variational inequality problem and fixed point problem for multi-valued mappings. Ann. Acad. Rom. Sci. Ser. Math. Appl. 9 (2) (2017), 255–280. | MR
[37] Parith, N., Boyd, S.: Proximal algorithms. Foundations and Trends in Optimization 1 (3) (2013), 123–231.
[38] Pesquet, J.-C., Putselnik, N.: A parallel inertial proximal optimization method. Pacific J. Optim. 8 (2) (2012), 273–306. | MR
[39] Polyak, B.T.: Some methods of speeding up the convergence of iteration methods. U.S.S.R. Comput. Math. Math. Phys. 4 (5) (1964), 1–17. | DOI | MR
[40] Rockafellar, R.T.: On the maximality of sums of nonlinear monotone operators. Trans. Amer. Math. Soc. 149 (1970), 75–88. | DOI | MR
[41] Rockafellar, R.T., Wets, R.: Variational Analysis. Springer, Berlin, 1988.
[42] Shehu, Y.: Approximation of solutions to constrained convex minimization problem in Hilbert spaces. Vietnam J. Math. (2014), DOI 10.1007/s10013-014-0091-1. | DOI | MR
[43] Stampacchia, G.: Formes bilinearies coercitives sur les ensembles convexes. Comput. Rend. Acad. Sci. Paris 258 (1964), 4413–4416. | MR
[44] Su, M., Xu, H.K.: Remarks on the gradient-projection algorithm. J. Nonlinear Anal. Optim. 1 (1) (2010), 35–43. | MR
[45] Suzuki, T.: Moudai’s viscosity approximations with Meir-Keeler contractions. J. Math. Anal. Appl. 325 (2007), 342–352. | DOI | MR
[46] Takahashi, W., Wen, C.-F., Yao, J.-C.: The shrinking projection method for a finite family of demimetric mappings with variational inequality problems in a Hilbert space. Fixed Point Theory 19 (1) (2018), 407–420. | DOI | MR
[47] Tian, M., Huang, L.H.: A general approximation method for a kind of convex optimization problems in Hilbert spaces. J. Appl. Math. 2014 (2014), 9 pages, Article ID 156073. | MR
[48] Xu, H.K.: Viscosity approximation method for nonexpansive mappings. J. Math. Anal. Appl. 298 (1) (2004), 279–291. | DOI | MR
[49] Xu, H.K.: Average mappings and the gradient projection algorithm. J. Optim. Theory Appl. 150 rm (2) (2011), 360–378. | DOI | MR
Cité par Sources :