Existence and reduction of generalized Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials
Archivum mathematicum, Tome 55 (2019) no. 3, pp. 157-165 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

One can find in the mathematical literature many recent papers studying the generalized Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials, defined by means of generating functions. In this article we clarify the range of parameters in which these definitions are valid and when they provide essentially different families of polynomials. In particular, we show that, up to multiplicative constants, it is enough to take as the “main family” those given by \[ \Big ( \frac{2}{\lambda e^t+1} \Big )^\alpha e^{xt} = \sum _{n=0}^{\infty } \mathcal{E}^{(\alpha )}_{n}(x;\lambda ) \frac{t^n}{n!}\,, \qquad \lambda \in \mathbb{C}\setminus \lbrace -1\rbrace \,, \] and as an “exceptional family” \[ \Big ( \frac{t}{e^t-1} \Big )^\alpha e^{xt} = \sum _{n=0}^{\infty } \mathcal{B}^{(\alpha )}_{n}(x) \frac{t^n}{n!}\,, \] both of these for $\alpha \in \mathbb{C}$.
One can find in the mathematical literature many recent papers studying the generalized Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials, defined by means of generating functions. In this article we clarify the range of parameters in which these definitions are valid and when they provide essentially different families of polynomials. In particular, we show that, up to multiplicative constants, it is enough to take as the “main family” those given by \[ \Big ( \frac{2}{\lambda e^t+1} \Big )^\alpha e^{xt} = \sum _{n=0}^{\infty } \mathcal{E}^{(\alpha )}_{n}(x;\lambda ) \frac{t^n}{n!}\,, \qquad \lambda \in \mathbb{C}\setminus \lbrace -1\rbrace \,, \] and as an “exceptional family” \[ \Big ( \frac{t}{e^t-1} \Big )^\alpha e^{xt} = \sum _{n=0}^{\infty } \mathcal{B}^{(\alpha )}_{n}(x) \frac{t^n}{n!}\,, \] both of these for $\alpha \in \mathbb{C}$.
DOI : 10.5817/AM2019-3-157
Classification : 05A15, 11B68
Keywords: Bernoulli polynomials; Nørlund polynomials; Apostol-Bernoulli polynomials; Apostol-Euler polynomials; Apostol-Genocchi polynomials; generating functions; Appell sequences
@article{10_5817_AM2019_3_157,
     author = {Navas, Luis M. and Ruiz, Francisco J. and Varona, Juan L.},
     title = {Existence and reduction of generalized {Apostol-Bernoulli,} {Apostol-Euler} and {Apostol-Genocchi} polynomials},
     journal = {Archivum mathematicum},
     pages = {157--165},
     year = {2019},
     volume = {55},
     number = {3},
     doi = {10.5817/AM2019-3-157},
     mrnumber = {3994323},
     zbl = {07138660},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2019-3-157/}
}
TY  - JOUR
AU  - Navas, Luis M.
AU  - Ruiz, Francisco J.
AU  - Varona, Juan L.
TI  - Existence and reduction of generalized Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials
JO  - Archivum mathematicum
PY  - 2019
SP  - 157
EP  - 165
VL  - 55
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2019-3-157/
DO  - 10.5817/AM2019-3-157
LA  - en
ID  - 10_5817_AM2019_3_157
ER  - 
%0 Journal Article
%A Navas, Luis M.
%A Ruiz, Francisco J.
%A Varona, Juan L.
%T Existence and reduction of generalized Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials
%J Archivum mathematicum
%D 2019
%P 157-165
%V 55
%N 3
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2019-3-157/
%R 10.5817/AM2019-3-157
%G en
%F 10_5817_AM2019_3_157
Navas, Luis M.; Ruiz, Francisco J.; Varona, Juan L. Existence and reduction of generalized Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials. Archivum mathematicum, Tome 55 (2019) no. 3, pp. 157-165. doi: 10.5817/AM2019-3-157

[1] Apostol, T.: On the Lerch Zeta function, Addendum. Pacific J. Math. 1 (1951), 161–167, Pacific J. Math. 2 (1952), 10. | DOI | MR

[2] Bayad, A.: Fourier expansions for Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials. Math. Comp. 80 (2011), 2219–2221. | DOI | MR

[3] Hernández-Llanos, P., Quintana, Y., Urieles, A.: About extensions of generalized Apostol-type polynomials. Results Math. 68 (2015), 203–225. | DOI | MR

[4] Horadam, A.F.: Genocchi polynomials. Applications of Fibonacci Numbers (G. E. Bergum, A. N. Philippou, Horadam, A. F., eds.), vol. 4, Kluwer, 1991, pp. 145–166. | MR

[5] Kurt, B.: Some relationships between the generalized Apostol-Bernoulli and Apostol-Euler polynomials. Turkish Journal of Analysis and Number Theory 1 (2013), 54–58. | DOI

[6] Luo, Q.-M.: Fourier expansions and integral representations for the Apostol-Bernoulli and Apostol-Euler polynomials. Math. Comp. 78 (2009), 2193–2208. | DOI | MR

[7] Luo, Q.-M., Srivastava, H.M.: Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials. J. Math. Anal. Appl. 308 (2005), 290–302. | DOI | MR

[8] Luo, Q.-M., Srivastava, H.M.: Some generalizations of the Apostol-Genocchi polynomials and the Stirling numbers of the second kind. Appl. Math. Comput. 217 (2011), 5702–5728. | MR

[9] Navas, L.M., Ruiz, F.J., Varona, J.L.: Asymptotic estimates for Apostol-Bernoulli and Apostol-Euler polynomials. Math. Comp. 81 (2012), 1707–1722. | DOI | MR

[10] Nørlund, N.E.: Mémoire sur les polynômes de Bernoulli. Acta Math. 43 (1922), 121–196. | DOI | MR

[11] Nørlund, N.E.: Vorlesungen über Differenzenrechnung. 1st ed., Springer-Verlag, Berlin-Heidelberg, 1924. | MR

[12] Srivastava, H.M., Choi, J.: Zeta and $q$-zeta functions and associated series and integrals. Elsevier, 2012. | MR

[13] Srivastava, H.M., Kurt, B., Simsek, Y.: Corrigendum: Some families of Genocchi type polynomials and their interpolation functions. Integral Transforms Spec. Funct. 23 (2012), 939–940. | DOI | MR

Cité par Sources :