Existence and uniqueness of solutions of the fractional integro-differential equations in vector-valued function space
Archivum mathematicum, Tome 55 (2019) no. 2, pp. 97-108 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The aim of this work is to study the existence and uniqueness of solutions of the fractional integro-differential equations $\frac{d}{dt}[x(t) - L(x_{t})]= A[x(t)- L(x_{t})]+G(x_{t})+ \frac{1}{\Gamma (\alpha )} \int _{- \infty }^{t} (t-s)^{\alpha - 1} ( \int _{- \infty }^{s}a(s-\xi )x(\xi ) d \xi )ds+f(t)$, ($\alpha > 0$) with the periodic condition $x(0) = x(2\pi )$, where $a \in L^{1}(\mathbb{R}_{+})$ . Our approach is based on the R-boundedness of linear operators $L^{p}$-multipliers and UMD-spaces.
The aim of this work is to study the existence and uniqueness of solutions of the fractional integro-differential equations $\frac{d}{dt}[x(t) - L(x_{t})]= A[x(t)- L(x_{t})]+G(x_{t})+ \frac{1}{\Gamma (\alpha )} \int _{- \infty }^{t} (t-s)^{\alpha - 1} ( \int _{- \infty }^{s}a(s-\xi )x(\xi ) d \xi )ds+f(t)$, ($\alpha > 0$) with the periodic condition $x(0) = x(2\pi )$, where $a \in L^{1}(\mathbb{R}_{+})$ . Our approach is based on the R-boundedness of linear operators $L^{p}$-multipliers and UMD-spaces.
DOI : 10.5817/AM2019-2-97
Classification : 43A15, 45D05, 45N05
Keywords: periodic solution; $L^{p}$-multipliers; UMD-spaces
@article{10_5817_AM2019_2_97,
     author = {Rachid, Bahloul},
     title = {Existence and uniqueness of solutions of the fractional integro-differential equations in vector-valued function space},
     journal = {Archivum mathematicum},
     pages = {97--108},
     year = {2019},
     volume = {55},
     number = {2},
     doi = {10.5817/AM2019-2-97},
     mrnumber = {3964437},
     zbl = {07088761},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2019-2-97/}
}
TY  - JOUR
AU  - Rachid, Bahloul
TI  - Existence and uniqueness of solutions of the fractional integro-differential equations in vector-valued function space
JO  - Archivum mathematicum
PY  - 2019
SP  - 97
EP  - 108
VL  - 55
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2019-2-97/
DO  - 10.5817/AM2019-2-97
LA  - en
ID  - 10_5817_AM2019_2_97
ER  - 
%0 Journal Article
%A Rachid, Bahloul
%T Existence and uniqueness of solutions of the fractional integro-differential equations in vector-valued function space
%J Archivum mathematicum
%D 2019
%P 97-108
%V 55
%N 2
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2019-2-97/
%R 10.5817/AM2019-2-97
%G en
%F 10_5817_AM2019_2_97
Rachid, Bahloul. Existence and uniqueness of solutions of the fractional integro-differential equations in vector-valued function space. Archivum mathematicum, Tome 55 (2019) no. 2, pp. 97-108. doi: 10.5817/AM2019-2-97

[2] Arendt, W.: Semigroups and evolution equations: functional calculus, regularity and kernel estimates. Handb. Differ. Equ., vol. I, North-Holland, Amsterdam, 2004, pp. 1–85. | MR

[3] Arendt, W., Bu, S.: The operator-valued Marcinkiewicz multiplier theorem and maximal regularity. Math. Z. 240 (2002), 311–343. | DOI | MR | Zbl

[4] Arendt, W., Bu, S.: Operator-valued Fourier multipliers on periodic Besov spaces and applications. Proc. Edinb. Math. Soc. (2) 47 (2004), 15–33. | MR

[5] Bourgain, J.: Vector-valued Hausdorff-Young inequalities and applications. Geometric Aspects of Functional Analysis (1986/1987),, vol. 1317, Lecture Notes in Math., Springer Verlag Berlin, 1986, pp. 239–249. | MR

[6] Bourgain, J.: Vector-valued singular integrals and the $H^1$-BMO duality. probability theory and harmonic analysis ed., Marcel Dekker, New York, 1986. | MR

[7] Bu, S.: Maximal regularity for integral equations in Banach spaces. Taiwanese J. Math. 15 (1) (2011), 229–240. | DOI | MR

[8] Bu, S., Fang, F.: Periodic solutions for second order integro-differential equations with infinite delay in Banach spaces. Studia Math. 184 (2) (2008), 103–119. | DOI | MR

[9] Cai, G., Bu, S.: Well-posedness of second order degenerate integro-differential equations with infinite delay in vector-valued function spaces. Math. Nachr. 289 (2016), 436–451. | DOI | MR

[10] Cavalcanti, M.M., Cavalcanti, V.N. Domingos, Guesmia, A.: Weak stability for coupled wave and/or Petrovsky systems with complementary frictional damping and infinite memory. J. Differential Equations 259 (2015), 7540–7577. | DOI | MR

[11] Clément, Ph., Da Prato, G.: Existence and regularity results for an integral equation with infinite delay in a Banach space. Integral Equations Operator Theory 11 (1988), 480–500. | DOI | MR

[12] Clément, Ph., de Pagter, B., Sukochev, F.A., Witvliet, M.: Schauder decomposition and multiplier theorems. Studia Math. 138 (2000), 135–163. | MR

[13] Clément, Ph., Prüss, J.: An operator-valued transference principle and maximal regularity on vector-valued $Lp$-spaces. Evolution equations and their applications in physical and life sciences (Bad Herrenalb, 1998), Lecture Notes in Pure and Appl. Math., vol. 215, Dekker, New York, 2001, pp. 67–87. | MR

[14] Da Prato, G., Lunardi, A.: Periodic solutions for linear integrodifferential equations with infinite delay in Banach spaces. Differential Equations in Banach spaces, Lecture Notes in Math., vol. 1223, Springer, Berlin, 1986, pp. 49–60. | MR

[15] de Pagter, B., Witvliet, H.: Unconditional decompositions and $UMD$ spaces. Publ. Math. Besançon, Fasc. 16 (1998), 79–111. | MR

[16] Denk, R., Hieber, M., Prüss, Jan: R-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Amer. Math. Soc. 788 (2003). | MR

[17] Girardi, M., Weis, L.: Operator-valued Fourier multiplier theorems on Besov spaces. Math. Nachr. 251 (2003), 34–51. | DOI | MR

[18] Girardi, M., Weis, L.: Operator-valued Fourier multipliers and the geometry of Banach spaces. J. Funct. Anal. 204 (2) (2003), 320–354. | DOI | MR

[19] Keyantuo, V., Lizama, C.: Fourier multipliers and integro-differential equations in Banach spaces. J. London Math. Soc. 69 (3) (2004), 737–750. | DOI | MR

[20] Keyantuo, V., Lizama, C.: Periodic solutions of second order differential equations in Banach spaces. Math. Z. 253 (2006), 489–514. | DOI | MR

[21] Keyantuo, V., Lizama, C., Poblete, V.: Periodic solutions of integro-differential equations in vector-valued function spaces. J. Differential Equations 246 (2009), 1007–1037. | DOI | MR

[22] Koumla, S., Ezzinbi, Kh., Bahloul, R.: Mild solutions for some partial functional integrodifferential equations with finite delay in Fréchet spaces. SeMA J. 74 (4) (2017), 489–501. | DOI | MR

[23] Kunstmann, P.C., Weis, L.: Maximal $L_p$-regularity for parabolic equations, Fourier multiplier theorems and $H^\infty $-functional calculus. Functional analytic methods for evolution equations, Lecture Notes in Math., vol. 1855, Springer, Berlin, 2004, pp. 65–311. | MR

[24] Lizama, C.: Fourier multipliers and periodic solutions of delay equations in Banach spaces. J. Math. Anal. Appl. 324 (1) (2006), 921–933. | DOI | MR

[25] Lizama, C., Poblete, V.: Periodic solutions of fractional differential equations with delay. Journal of Evolution Equations 11 (2011), 57–70. | DOI | MR

[26] Poblete, V.: Solutions of second-order integro-differental equations on periodic Besov space. Proc. Edinburgh Math. Soc. (2) 50 (20) (2007), 477–492. | MR

[27] Suresh Kumar, P., Balachandran, K., Annapoorani, N.: Controllability of nonlinear fractional Langevin delay systems. Nonlinear Analysis: Modelling and Control 23 (3) (2017), 321–340, | DOI | MR

[28] Weis, L.: A new approach to maximal $L_p$-regularity. Lect. Notes Pure Appl. Math. 2115 (2001), 195–214. | MR

[29] Weis, L.: Operator-valued Fourier multiplier theorems and maximal $L_p$-regularity. Math. Ann. 319 (2001), 735–758. | DOI | MR

Cité par Sources :