Keywords: periodic solution; $L^{p}$-multipliers; UMD-spaces
@article{10_5817_AM2019_2_97,
author = {Rachid, Bahloul},
title = {Existence and uniqueness of solutions of the fractional integro-differential equations in vector-valued function space},
journal = {Archivum mathematicum},
pages = {97--108},
year = {2019},
volume = {55},
number = {2},
doi = {10.5817/AM2019-2-97},
mrnumber = {3964437},
zbl = {07088761},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2019-2-97/}
}
TY - JOUR AU - Rachid, Bahloul TI - Existence and uniqueness of solutions of the fractional integro-differential equations in vector-valued function space JO - Archivum mathematicum PY - 2019 SP - 97 EP - 108 VL - 55 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2019-2-97/ DO - 10.5817/AM2019-2-97 LA - en ID - 10_5817_AM2019_2_97 ER -
%0 Journal Article %A Rachid, Bahloul %T Existence and uniqueness of solutions of the fractional integro-differential equations in vector-valued function space %J Archivum mathematicum %D 2019 %P 97-108 %V 55 %N 2 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2019-2-97/ %R 10.5817/AM2019-2-97 %G en %F 10_5817_AM2019_2_97
Rachid, Bahloul. Existence and uniqueness of solutions of the fractional integro-differential equations in vector-valued function space. Archivum mathematicum, Tome 55 (2019) no. 2, pp. 97-108. doi: 10.5817/AM2019-2-97
[2] Arendt, W.: Semigroups and evolution equations: functional calculus, regularity and kernel estimates. Handb. Differ. Equ., vol. I, North-Holland, Amsterdam, 2004, pp. 1–85. | MR
[3] Arendt, W., Bu, S.: The operator-valued Marcinkiewicz multiplier theorem and maximal regularity. Math. Z. 240 (2002), 311–343. | DOI | MR | Zbl
[4] Arendt, W., Bu, S.: Operator-valued Fourier multipliers on periodic Besov spaces and applications. Proc. Edinb. Math. Soc. (2) 47 (2004), 15–33. | MR
[5] Bourgain, J.: Vector-valued Hausdorff-Young inequalities and applications. Geometric Aspects of Functional Analysis (1986/1987),, vol. 1317, Lecture Notes in Math., Springer Verlag Berlin, 1986, pp. 239–249. | MR
[6] Bourgain, J.: Vector-valued singular integrals and the $H^1$-BMO duality. probability theory and harmonic analysis ed., Marcel Dekker, New York, 1986. | MR
[7] Bu, S.: Maximal regularity for integral equations in Banach spaces. Taiwanese J. Math. 15 (1) (2011), 229–240. | DOI | MR
[8] Bu, S., Fang, F.: Periodic solutions for second order integro-differential equations with infinite delay in Banach spaces. Studia Math. 184 (2) (2008), 103–119. | DOI | MR
[9] Cai, G., Bu, S.: Well-posedness of second order degenerate integro-differential equations with infinite delay in vector-valued function spaces. Math. Nachr. 289 (2016), 436–451. | DOI | MR
[10] Cavalcanti, M.M., Cavalcanti, V.N. Domingos, Guesmia, A.: Weak stability for coupled wave and/or Petrovsky systems with complementary frictional damping and infinite memory. J. Differential Equations 259 (2015), 7540–7577. | DOI | MR
[11] Clément, Ph., Da Prato, G.: Existence and regularity results for an integral equation with infinite delay in a Banach space. Integral Equations Operator Theory 11 (1988), 480–500. | DOI | MR
[12] Clément, Ph., de Pagter, B., Sukochev, F.A., Witvliet, M.: Schauder decomposition and multiplier theorems. Studia Math. 138 (2000), 135–163. | MR
[13] Clément, Ph., Prüss, J.: An operator-valued transference principle and maximal regularity on vector-valued $Lp$-spaces. Evolution equations and their applications in physical and life sciences (Bad Herrenalb, 1998), Lecture Notes in Pure and Appl. Math., vol. 215, Dekker, New York, 2001, pp. 67–87. | MR
[14] Da Prato, G., Lunardi, A.: Periodic solutions for linear integrodifferential equations with infinite delay in Banach spaces. Differential Equations in Banach spaces, Lecture Notes in Math., vol. 1223, Springer, Berlin, 1986, pp. 49–60. | MR
[15] de Pagter, B., Witvliet, H.: Unconditional decompositions and $UMD$ spaces. Publ. Math. Besançon, Fasc. 16 (1998), 79–111. | MR
[16] Denk, R., Hieber, M., Prüss, Jan: R-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Amer. Math. Soc. 788 (2003). | MR
[17] Girardi, M., Weis, L.: Operator-valued Fourier multiplier theorems on Besov spaces. Math. Nachr. 251 (2003), 34–51. | DOI | MR
[18] Girardi, M., Weis, L.: Operator-valued Fourier multipliers and the geometry of Banach spaces. J. Funct. Anal. 204 (2) (2003), 320–354. | DOI | MR
[19] Keyantuo, V., Lizama, C.: Fourier multipliers and integro-differential equations in Banach spaces. J. London Math. Soc. 69 (3) (2004), 737–750. | DOI | MR
[20] Keyantuo, V., Lizama, C.: Periodic solutions of second order differential equations in Banach spaces. Math. Z. 253 (2006), 489–514. | DOI | MR
[21] Keyantuo, V., Lizama, C., Poblete, V.: Periodic solutions of integro-differential equations in vector-valued function spaces. J. Differential Equations 246 (2009), 1007–1037. | DOI | MR
[22] Koumla, S., Ezzinbi, Kh., Bahloul, R.: Mild solutions for some partial functional integrodifferential equations with finite delay in Fréchet spaces. SeMA J. 74 (4) (2017), 489–501. | DOI | MR
[23] Kunstmann, P.C., Weis, L.: Maximal $L_p$-regularity for parabolic equations, Fourier multiplier theorems and $H^\infty $-functional calculus. Functional analytic methods for evolution equations, Lecture Notes in Math., vol. 1855, Springer, Berlin, 2004, pp. 65–311. | MR
[24] Lizama, C.: Fourier multipliers and periodic solutions of delay equations in Banach spaces. J. Math. Anal. Appl. 324 (1) (2006), 921–933. | DOI | MR
[25] Lizama, C., Poblete, V.: Periodic solutions of fractional differential equations with delay. Journal of Evolution Equations 11 (2011), 57–70. | DOI | MR
[26] Poblete, V.: Solutions of second-order integro-differental equations on periodic Besov space. Proc. Edinburgh Math. Soc. (2) 50 (20) (2007), 477–492. | MR
[27] Suresh Kumar, P., Balachandran, K., Annapoorani, N.: Controllability of nonlinear fractional Langevin delay systems. Nonlinear Analysis: Modelling and Control 23 (3) (2017), 321–340, | DOI | MR
[28] Weis, L.: A new approach to maximal $L_p$-regularity. Lect. Notes Pure Appl. Math. 2115 (2001), 195–214. | MR
[29] Weis, L.: Operator-valued Fourier multiplier theorems and maximal $L_p$-regularity. Math. Ann. 319 (2001), 735–758. | DOI | MR
Cité par Sources :