Keywords: conformable fractional calculus; conformable fractional differential equations; solution-tube; Schauder’s fixed-point theorem; fractional Sobolev’s spaces
@article{10_5817_AM2019_2_69,
author = {Bendouma, Bouharket and Cabada, Alberto and Hammoudi, Ahmed},
title = {Existence results for systems of conformable fractional differential equations},
journal = {Archivum mathematicum},
pages = {69--82},
year = {2019},
volume = {55},
number = {2},
doi = {10.5817/AM2019-2-69},
mrnumber = {3964435},
zbl = {07088759},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2019-2-69/}
}
TY - JOUR AU - Bendouma, Bouharket AU - Cabada, Alberto AU - Hammoudi, Ahmed TI - Existence results for systems of conformable fractional differential equations JO - Archivum mathematicum PY - 2019 SP - 69 EP - 82 VL - 55 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2019-2-69/ DO - 10.5817/AM2019-2-69 LA - en ID - 10_5817_AM2019_2_69 ER -
%0 Journal Article %A Bendouma, Bouharket %A Cabada, Alberto %A Hammoudi, Ahmed %T Existence results for systems of conformable fractional differential equations %J Archivum mathematicum %D 2019 %P 69-82 %V 55 %N 2 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2019-2-69/ %R 10.5817/AM2019-2-69 %G en %F 10_5817_AM2019_2_69
Bendouma, Bouharket; Cabada, Alberto; Hammoudi, Ahmed. Existence results for systems of conformable fractional differential equations. Archivum mathematicum, Tome 55 (2019) no. 2, pp. 69-82. doi: 10.5817/AM2019-2-69
[1] Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279 (2015), 57–66. | DOI | MR
[2] Abdeljawad, T., AlHorani, M., Khalil, R.: Conformable fractional semigroups of operators. J. Semigroup Theory Appl. 2015 (2015), 9 pages.
[3] Anderson, D.R., Avery, R.I.: Fractional-order boundary value problem with Sturm-Liouville boundary conditions. Electronic J. Differential Equ. 2015 (29) (2015), 10 pages. | MR
[4] Batarfi, H., Losada, J., Nieto, J.J., Shammakh, W.: Three-point boundary value problems for conformable fractional differential equations. J. Function Spaces 2015 (2015), 6 pages. | MR
[5] Bayour, B., Torres, D.F.M.: Existence of solution to a local fractional nonlinear differential equation. J. Comput. Appl. Math. 312 (2016), 127–133. | DOI | MR
[6] Benchohra, M., Cabada, A., Seba, D.: An existence result for nonlinear fractional differential equations on Banach spaces. Boundary Value Problem 2009 (2009), 11 pages. | MR
[7] Bendouma, B., Cabada, A., Hammoudi, A.: Existence of solutions for conformable fractional problems with nonlinear functional boundary conditions. submitted.
[8] Benkhettou, N., Hassani, S., Torres, D.F.M.: A conformable fractional calculus on arbitrary time scales. J. King Saud Univ. Sci. 28 (1) (2016), 93–98. | DOI
[9] Cabada, A.: Green’s Functions in the Theory of Ordinary Differential Equations. Springer, New York, 2014. | MR
[10] Cabada, A., Hamdi, Z.: Nonlinear fractional differential equations with integral boundary value conditions. Appl. Appl. Math. Comput. 228 (2014), 251–257. | DOI | MR
[11] Cabada, A., Hamdi, Z.: Existence results for nonlinear fractional Dirichlet problems on the right side of the first eigenvalue. Georgian Math. J. 24 (1) (2017), 41–53. | DOI | MR
[12] Cabada, A., Wang, G.: Positive solutions of nonlinear fractional differential equations with integral boundary value conditions. J. Math. Anal. Appl. 389 (1) (2012), 403–411. | DOI | MR
[13] Chung, W.S.: Fractional Newton mechanics with conformable fractional derivative. J. Comput. Appl. Math. 290 (2015), 150–158. | DOI | MR
[14] Frigon, M., O’Regan, D.: Existence results for initial value problems in Banach spaces. Differ. Equ. Dyn. Syst. 2 (1994), 41–48. | MR
[15] Frigon, M., O’Regan, D.: Nonlinear first order initial and periodic problems in Banach spaces. Appl. Math. Lett. 10 (1997), 41–46. | DOI | MR
[16] Gilbert, H.: Existence theorems for first order equations on time scales with $ \Delta -$Carathédory functions. Adv. Difference Equ. 2010 (2010), 20 pages, Article ID 650827. | MR
[17] Gökdoǧan, A., Ünal, E., Çelik, E.: Existence and uniqueness theorems for sequential linear conformable fractional differential equations. arXiv preprint, 2015. | MR
[18] Gözütok, N.Y., Gözütok, U.: Multivariable conformable fractional calculus. math.CA 2017.
[19] Gulsen, T., Yilmaz, E., Goktas, S.: Conformable fractional Dirac system on time scales. J. Inequ. Appl. 2017 (2017), 1–10. | MR
[20] Iyiola, O.S., Nwaeze, E.R.: Some new results on the new conformable fractional calculu swith application using D’Alambert approach. Progr. Fract. Differ. Appl. 2 (2) (2016), 115–122. | DOI
[21] Katugampola, U.N.: A new fractional derivative with classical properties. preprint, 2014. | MR
[22] Khaldi, R., Guezane-Lakoud, A.: Lyapunov inequality for a boundary value problem involving conformable derivative. Progr. Fract. Differ. Appl. 3 (4) (2017), 323–329. | DOI
[23] Khalil, R., Horani, M. Al, Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264 (2014), 65–70. | DOI | MR
[24] Kilbas, A., Srivastava, M.H., Trujillo, J.J.: Theory and Application of Fractional Differential Equations. vol. 204, North Holland Mathematics Studies, 2006. | MR
[25] Magin, R.L.: Fractional calculus in bioengineering. CR in Biomedical Engineering 32 (1) (2004), 1–104. | DOI
[26] Mirandette, B.: Résultats d’existence pour des systèmes d’équations différentielles du premier ordre avec tube-solution. Mémoire de matrise, Université de Montréal, 1996.
[27] Nwaeze, E.R.: A mean value theorem for the conformable fractional calculus on arbitrary time scales. Progr. Fract. Differ. Appl. 2 (4) (2016), 287–291. | DOI
[28] Ortigueira, M.D., Machado, J.A. Tenreiro: What is a fractional derivative?. J. Comput. Phys. 293 (2015), 4–13. | DOI | MR
[29] Pospisil, M., Skripkova, L.P.: Sturm’s theorems for conformable fractional differential equations. Math. Commun. 21 (2016), 273–281. | MR
[30] Shi, A., Zhang, S.: Upper and lower solutions method and a fractional differential equation boundary value problem. Progr. Fract. Differ. Appl. 30 (2009), 13 pages. | MR
[31] Shugui, K., Huiqing, C., Yaqing, Y., Ying, G.: Existence and uniqueness of the solutions for the fractional initial value problem. Electr. J. Shanghai Normal University (Natural Sciences) 45 (3) (2016), 313–319.
[32] Wang, Y., Zhou, J., Li, Y.: Fractional Sobolev’s spaces on time scales via conformable fractional calculus and their application to a fractional differential equation on time scales. Adv. Math. Phys. 2016 (2016), 21 pages. | MR
[33] Yang, X.J., Baleanu, D., Machado, J.A.T.: Application of the local fractional Fourier series to fractal signals. Discontinuity and complexity in nonlinear physical systems, Springer, Cham, 2014, pp. 63–89. | MR
[34] Zhang, S., Su, X.: The existence of a solution for a fractional differential equation with nonlinear boundary conditions considered using upper and lower solutions in reverse order. Comput. Math. Appl. 62 (3) (2011), 1269–1274. | DOI | MR
Cité par Sources :