The graded differential geometry of mixed symmetry tensors
Archivum mathematicum, Tome 55 (2019) no. 2, pp. 123-137 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We show how the theory of $\mathbb{Z}_2^n$-manifolds - which are a non-trivial generalisation of supermanifolds - may be useful in a geometrical approach to mixed symmetry tensors such as the dual graviton. The geometric aspects of such tensor fields on both flat and curved space-times are discussed.
We show how the theory of $\mathbb{Z}_2^n$-manifolds - which are a non-trivial generalisation of supermanifolds - may be useful in a geometrical approach to mixed symmetry tensors such as the dual graviton. The geometric aspects of such tensor fields on both flat and curved space-times are discussed.
DOI : 10.5817/AM2019-2-123
Classification : 53C80, 58A50, 83C65
Keywords: $\mathbb{Z}_2^n$-manifolds; mixed symmetry tensors; dual gravitons
@article{10_5817_AM2019_2_123,
     author = {Bruce, Andrew James and Ibarguengoytia, Eduardo},
     title = {The graded differential geometry of mixed symmetry tensors},
     journal = {Archivum mathematicum},
     pages = {123--137},
     year = {2019},
     volume = {55},
     number = {2},
     doi = {10.5817/AM2019-2-123},
     mrnumber = {3964439},
     zbl = {07088763},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2019-2-123/}
}
TY  - JOUR
AU  - Bruce, Andrew James
AU  - Ibarguengoytia, Eduardo
TI  - The graded differential geometry of mixed symmetry tensors
JO  - Archivum mathematicum
PY  - 2019
SP  - 123
EP  - 137
VL  - 55
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2019-2-123/
DO  - 10.5817/AM2019-2-123
LA  - en
ID  - 10_5817_AM2019_2_123
ER  - 
%0 Journal Article
%A Bruce, Andrew James
%A Ibarguengoytia, Eduardo
%T The graded differential geometry of mixed symmetry tensors
%J Archivum mathematicum
%D 2019
%P 123-137
%V 55
%N 2
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2019-2-123/
%R 10.5817/AM2019-2-123
%G en
%F 10_5817_AM2019_2_123
Bruce, Andrew James; Ibarguengoytia, Eduardo. The graded differential geometry of mixed symmetry tensors. Archivum mathematicum, Tome 55 (2019) no. 2, pp. 123-137. doi: 10.5817/AM2019-2-123

[1] Bekaert, X., Boulanger, N.: Tensor gauge fields in arbitrary representations of $GL(D,\mathbb{R})$. Duality and Poincaré lemma. Comm. Math. Phys. 245 (1) (2004), 27–67. | DOI | MR

[2] Bekaert, X., Boulanger, N., Henneaux, M.: Consistent deformations of dual formulations of linearized gravity: a no-go result. Phys. Rev. D 67 (4) (2003), 044010. | DOI | MR

[3] Bergshoeff, E.A., Hohm, O., Penas, V.A., Riccioni, F.: Dual double field theory. J. High Energy Phys. 26 (6) (2016), 39 pp. | MR

[4] Campoleoni, A.: Metric-like Lagrangian formulations for higher-spin fields of mixed symmetry. Riv. Nuovo Cimento (3) 33 (2010), 123–253.

[5] Chatzistavrakidis, A., Gautason, F.F., Moutsopoulos, G., Zagermann, M.: Effective actions of nongeometric five-branes. Phys. Rev. D 89 (2014), 066004. | DOI

[6] Chatzistavrakidis, A., Khoo, F.S., Roest, D., Schupp, P.: Tensor Galileons and gravity. J. High Energy Phys. (3) (2017), 070. | DOI | MR

[7] Covolo, T., Grabowski, J., Poncin, N.: Splitting theorem for $\mathbb{Z}_2^n$-supermanifolds. J. Geom. Phys. 110 (2016), 393–401. | DOI | MR

[8] Covolo, T., Grabowski, J., Poncin, N.: The category of $\mathbb{Z}_2^n$-supermanifolds. J. Math. Phys. 57 (7) (2016), 16 pp., 073503. | DOI | MR

[9] Covolo, T., Kwok, S., Poncin, N.: Differential calculus on $\mathbb{Z}_2^n$-supermanifolds. arXiv:1608.00949 [math.DG].

[10] Curtright, T.: Generalized gauge fields. Phys. Lett. B 165 (1985), 304–308. | DOI

[11] de Medeiros, P.F., Hull, C.M.: Exotic tensor gauge theory and duality. Comm. Math. Phys. 235 (2003), 255–273. | DOI | MR

[12] Dubois-Violette, M., Henneaux, M.: Tensor fields of mixed Young symmetry type and N-complexes. Comm. Math. Phys. 226 (2) (2002), 393–418. | DOI | MR

[13] Hallowell, K., Waldron, A.: Supersymmetric quantum mechanics and super-Lichnerowicz algebras. Comm. Math. Phys. 278 (3) (2008), 775–801. | DOI | MR

[14] Hull, C.M.: Strongly coupled gravity and duality. Nuclear Phys. B 583 (1–2) (2000), 237–259. | MR

[15] Hull, C.M.: Duality in gravity and higher spin gauge fields. J. High Energy Phys. (9) (2001), 25 pp., Paper 27. | DOI | MR

[16] Khoo, F.S.: Generalized Geometry Approaches to Gravity. Ph.D. thesis, Jacobs University, Bremen, Germany, 2016.

[17] Lawson, H.B., Michelsohn, M-L.: Spin geometry. Princeton Math. Ser. 38 (1989), xii+427 pp. | MR

[18] Molotkov, V.: Infinite-dimensional and colored supermanifolds. J. Nonlinear Math. Phys. 17 Suppl. 1 (2010), 375–446. | DOI | MR

[19] Poncin, N.: Towards integration on colored supermanifolds. Banach Center Publ. (2016), 201–217, In: Geometry of jets and fields. | MR

[20] Pradines, J.: Représentation des jets non holonomes par des morphismes vectoriels doubles soudés. C. R. Acad. Sci. Paris Sér. A 278 (1974), 1523–1526. | MR | Zbl

[21] Vaintrob, A.: Darboux theorem and equivariant Morse lemma. J. Geom. Phys. 18 (1) (1996), 59–75. | DOI | MR

[22] Voronov, Th.: Geometric integration theory on supermanifolds. Soviet Scientific Reviews, Section C: Mathematical Physics Reviews, 9, Part 1 (1991), iv+138 pp. | MR

[23] Voronov, Th.: Q-manifolds and Mackenzie theory. Comm. Math. Phys. 315 (2012), 279–310. | DOI | MR | Zbl

Cité par Sources :