The graded differential geometry of mixed symmetry tensors
Archivum mathematicum, Tome 55 (2019) no. 2, pp. 123-137
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We show how the theory of $\mathbb{Z}_2^n$-manifolds - which are a non-trivial generalisation of supermanifolds - may be useful in a geometrical approach to mixed symmetry tensors such as the dual graviton. The geometric aspects of such tensor fields on both flat and curved space-times are discussed.
DOI :
10.5817/AM2019-2-123
Classification :
53C80, 58A50, 83C65
Keywords: $\mathbb{Z}_2^n$-manifolds; mixed symmetry tensors; dual gravitons
Keywords: $\mathbb{Z}_2^n$-manifolds; mixed symmetry tensors; dual gravitons
@article{10_5817_AM2019_2_123,
author = {Bruce, Andrew James and Ibarguengoytia, Eduardo},
title = {The graded differential geometry of mixed symmetry tensors},
journal = {Archivum mathematicum},
pages = {123--137},
publisher = {mathdoc},
volume = {55},
number = {2},
year = {2019},
doi = {10.5817/AM2019-2-123},
mrnumber = {3964439},
zbl = {07088763},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2019-2-123/}
}
TY - JOUR AU - Bruce, Andrew James AU - Ibarguengoytia, Eduardo TI - The graded differential geometry of mixed symmetry tensors JO - Archivum mathematicum PY - 2019 SP - 123 EP - 137 VL - 55 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2019-2-123/ DO - 10.5817/AM2019-2-123 LA - en ID - 10_5817_AM2019_2_123 ER -
%0 Journal Article %A Bruce, Andrew James %A Ibarguengoytia, Eduardo %T The graded differential geometry of mixed symmetry tensors %J Archivum mathematicum %D 2019 %P 123-137 %V 55 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.5817/AM2019-2-123/ %R 10.5817/AM2019-2-123 %G en %F 10_5817_AM2019_2_123
Bruce, Andrew James; Ibarguengoytia, Eduardo. The graded differential geometry of mixed symmetry tensors. Archivum mathematicum, Tome 55 (2019) no. 2, pp. 123-137. doi: 10.5817/AM2019-2-123
Cité par Sources :