Keywords: $\mathbb{Z}_2^n$-manifolds; mixed symmetry tensors; dual gravitons
@article{10_5817_AM2019_2_123,
author = {Bruce, Andrew James and Ibarguengoytia, Eduardo},
title = {The graded differential geometry of mixed symmetry tensors},
journal = {Archivum mathematicum},
pages = {123--137},
year = {2019},
volume = {55},
number = {2},
doi = {10.5817/AM2019-2-123},
mrnumber = {3964439},
zbl = {07088763},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2019-2-123/}
}
TY - JOUR AU - Bruce, Andrew James AU - Ibarguengoytia, Eduardo TI - The graded differential geometry of mixed symmetry tensors JO - Archivum mathematicum PY - 2019 SP - 123 EP - 137 VL - 55 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2019-2-123/ DO - 10.5817/AM2019-2-123 LA - en ID - 10_5817_AM2019_2_123 ER -
%0 Journal Article %A Bruce, Andrew James %A Ibarguengoytia, Eduardo %T The graded differential geometry of mixed symmetry tensors %J Archivum mathematicum %D 2019 %P 123-137 %V 55 %N 2 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2019-2-123/ %R 10.5817/AM2019-2-123 %G en %F 10_5817_AM2019_2_123
Bruce, Andrew James; Ibarguengoytia, Eduardo. The graded differential geometry of mixed symmetry tensors. Archivum mathematicum, Tome 55 (2019) no. 2, pp. 123-137. doi: 10.5817/AM2019-2-123
[1] Bekaert, X., Boulanger, N.: Tensor gauge fields in arbitrary representations of $GL(D,\mathbb{R})$. Duality and Poincaré lemma. Comm. Math. Phys. 245 (1) (2004), 27–67. | DOI | MR
[2] Bekaert, X., Boulanger, N., Henneaux, M.: Consistent deformations of dual formulations of linearized gravity: a no-go result. Phys. Rev. D 67 (4) (2003), 044010. | DOI | MR
[3] Bergshoeff, E.A., Hohm, O., Penas, V.A., Riccioni, F.: Dual double field theory. J. High Energy Phys. 26 (6) (2016), 39 pp. | MR
[4] Campoleoni, A.: Metric-like Lagrangian formulations for higher-spin fields of mixed symmetry. Riv. Nuovo Cimento (3) 33 (2010), 123–253.
[5] Chatzistavrakidis, A., Gautason, F.F., Moutsopoulos, G., Zagermann, M.: Effective actions of nongeometric five-branes. Phys. Rev. D 89 (2014), 066004. | DOI
[6] Chatzistavrakidis, A., Khoo, F.S., Roest, D., Schupp, P.: Tensor Galileons and gravity. J. High Energy Phys. (3) (2017), 070. | DOI | MR
[7] Covolo, T., Grabowski, J., Poncin, N.: Splitting theorem for $\mathbb{Z}_2^n$-supermanifolds. J. Geom. Phys. 110 (2016), 393–401. | DOI | MR
[8] Covolo, T., Grabowski, J., Poncin, N.: The category of $\mathbb{Z}_2^n$-supermanifolds. J. Math. Phys. 57 (7) (2016), 16 pp., 073503. | DOI | MR
[9] Covolo, T., Kwok, S., Poncin, N.: Differential calculus on $\mathbb{Z}_2^n$-supermanifolds. arXiv:1608.00949 [math.DG].
[10] Curtright, T.: Generalized gauge fields. Phys. Lett. B 165 (1985), 304–308. | DOI
[11] de Medeiros, P.F., Hull, C.M.: Exotic tensor gauge theory and duality. Comm. Math. Phys. 235 (2003), 255–273. | DOI | MR
[12] Dubois-Violette, M., Henneaux, M.: Tensor fields of mixed Young symmetry type and N-complexes. Comm. Math. Phys. 226 (2) (2002), 393–418. | DOI | MR
[13] Hallowell, K., Waldron, A.: Supersymmetric quantum mechanics and super-Lichnerowicz algebras. Comm. Math. Phys. 278 (3) (2008), 775–801. | DOI | MR
[14] Hull, C.M.: Strongly coupled gravity and duality. Nuclear Phys. B 583 (1–2) (2000), 237–259. | MR
[15] Hull, C.M.: Duality in gravity and higher spin gauge fields. J. High Energy Phys. (9) (2001), 25 pp., Paper 27. | DOI | MR
[16] Khoo, F.S.: Generalized Geometry Approaches to Gravity. Ph.D. thesis, Jacobs University, Bremen, Germany, 2016.
[17] Lawson, H.B., Michelsohn, M-L.: Spin geometry. Princeton Math. Ser. 38 (1989), xii+427 pp. | MR
[18] Molotkov, V.: Infinite-dimensional and colored supermanifolds. J. Nonlinear Math. Phys. 17 Suppl. 1 (2010), 375–446. | DOI | MR
[19] Poncin, N.: Towards integration on colored supermanifolds. Banach Center Publ. (2016), 201–217, In: Geometry of jets and fields. | MR
[20] Pradines, J.: Représentation des jets non holonomes par des morphismes vectoriels doubles soudés. C. R. Acad. Sci. Paris Sér. A 278 (1974), 1523–1526. | MR | Zbl
[21] Vaintrob, A.: Darboux theorem and equivariant Morse lemma. J. Geom. Phys. 18 (1) (1996), 59–75. | DOI | MR
[22] Voronov, Th.: Geometric integration theory on supermanifolds. Soviet Scientific Reviews, Section C: Mathematical Physics Reviews, 9, Part 1 (1991), iv+138 pp. | MR
[23] Voronov, Th.: Q-manifolds and Mackenzie theory. Comm. Math. Phys. 315 (2012), 279–310. | DOI | MR | Zbl
Cité par Sources :