On the adjoint map of homotopy abelian DG-Lie algebras
Archivum mathematicum, Tome 55 (2019) no. 1, pp. 7-15 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove that a differential graded Lie algebra is homotopy abelian if its adjoint map into its cochain complex of derivations is trivial in cohomology. The converse is true for cofibrant algebras and false in general.
We prove that a differential graded Lie algebra is homotopy abelian if its adjoint map into its cochain complex of derivations is trivial in cohomology. The converse is true for cofibrant algebras and false in general.
DOI : 10.5817/AM2019-1-7
Classification : 17B70, 18G55
Keywords: differential graded Lie algebras; adjoint map; cofibrant resolutions
@article{10_5817_AM2019_1_7,
     author = {Iacono, Donatella and Manetti, Marco},
     title = {On the adjoint map of homotopy abelian {DG-Lie} algebras},
     journal = {Archivum mathematicum},
     pages = {7--15},
     year = {2019},
     volume = {55},
     number = {1},
     doi = {10.5817/AM2019-1-7},
     mrnumber = {3939059},
     zbl = {07088753},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2019-1-7/}
}
TY  - JOUR
AU  - Iacono, Donatella
AU  - Manetti, Marco
TI  - On the adjoint map of homotopy abelian DG-Lie algebras
JO  - Archivum mathematicum
PY  - 2019
SP  - 7
EP  - 15
VL  - 55
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2019-1-7/
DO  - 10.5817/AM2019-1-7
LA  - en
ID  - 10_5817_AM2019_1_7
ER  - 
%0 Journal Article
%A Iacono, Donatella
%A Manetti, Marco
%T On the adjoint map of homotopy abelian DG-Lie algebras
%J Archivum mathematicum
%D 2019
%P 7-15
%V 55
%N 1
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2019-1-7/
%R 10.5817/AM2019-1-7
%G en
%F 10_5817_AM2019_1_7
Iacono, Donatella; Manetti, Marco. On the adjoint map of homotopy abelian DG-Lie algebras. Archivum mathematicum, Tome 55 (2019) no. 1, pp. 7-15. doi: 10.5817/AM2019-1-7

[1] Bandiera, R.: Nonabelian higher derived brackets. J. Pure Appl. Algebra 219 (2015), 3292–3313. | DOI | MR

[2] Bandiera, R.: Homotopy abelian $L_\infty $ algebras and splitting property. Rend. Mat. Appl. 37 (2016), 105–122, http://www1.mat.uniroma1.it/ricerca/rendiconti/37_1-2_(2016)_105-122.html | MR

[3] Hinich, V.: Homological algebra of homotopy algebras. Comm. Algebra 25 (1997), 3291–3323. | DOI | MR

[4] Iacono, D.: On the abstract Bogomolov-Tian-Todorov theorem. Rend. Mat. Appl. 38 (2017), 175–198, http://www1.mat.uniroma1.it/ricerca/rendiconti/38_2_(2017)_175-198.html | MR

[6] Manetti, M.: On some formality criteria for DG-Lie algebras. J. Algebra 438 (2015), 90–118. | DOI | MR

Cité par Sources :