Keywords: magnetohydrodynamic-$\alpha $ model; regularity criterion; Besov space
@article{10_5817_AM2019_1_55,
author = {Ben Omrane, Ines and Gala, Sadek and Kim, Jae-Myoung and Ragusa, Maria Alessandra},
title = {Logarithmically improved blow-up criterion for smooth solutions to the {Leray-}$\alpha $-magnetohydrodynamic equations},
journal = {Archivum mathematicum},
pages = {55--68},
year = {2019},
volume = {55},
number = {1},
doi = {10.5817/AM2019-1-55},
mrnumber = {3939064},
zbl = {07088758},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2019-1-55/}
}
TY - JOUR AU - Ben Omrane, Ines AU - Gala, Sadek AU - Kim, Jae-Myoung AU - Ragusa, Maria Alessandra TI - Logarithmically improved blow-up criterion for smooth solutions to the Leray-$\alpha $-magnetohydrodynamic equations JO - Archivum mathematicum PY - 2019 SP - 55 EP - 68 VL - 55 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2019-1-55/ DO - 10.5817/AM2019-1-55 LA - en ID - 10_5817_AM2019_1_55 ER -
%0 Journal Article %A Ben Omrane, Ines %A Gala, Sadek %A Kim, Jae-Myoung %A Ragusa, Maria Alessandra %T Logarithmically improved blow-up criterion for smooth solutions to the Leray-$\alpha $-magnetohydrodynamic equations %J Archivum mathematicum %D 2019 %P 55-68 %V 55 %N 1 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2019-1-55/ %R 10.5817/AM2019-1-55 %G en %F 10_5817_AM2019_1_55
Ben Omrane, Ines; Gala, Sadek; Kim, Jae-Myoung; Ragusa, Maria Alessandra. Logarithmically improved blow-up criterion for smooth solutions to the Leray-$\alpha $-magnetohydrodynamic equations. Archivum mathematicum, Tome 55 (2019) no. 1, pp. 55-68. doi: 10.5817/AM2019-1-55
[1] Chen, S.Y., Foias, C., Holm, D.D., Olson, E., Titi, E.S., Wynne, S.: Camassa-Holm equations as a closure model for trubulent channel andpipe flow. Phys. Rev. Lett. 81 (1998), 5338–5341. | DOI | MR
[2] Chen, S.Y., Foias, C., Holm, D.D., Olson, E., Titi, E.S., Wynne, S.: A connection between the Camassa-Holm equations and turbulent flowsin channels and pipes. Phys. Fluids 11 (1999), 2343–2353. | DOI | MR
[3] Chen, S.Y., Foias, C., Holm, D.D., Olson, E., Titi, E.S., Wynne, S.: The Camassa-Holm equations and turbulence. Phys. D 133 (1999), 49–65. | DOI | MR
[4] Cheskidov, A., Holm, D.D., Olson, E., Titi, E.S.: On a Leray-$\alpha $ model of turbulence. Proc. Roy. Soc. London Ser. A 461 (2005), 629–649. | MR
[5] Fan, J., Ozawa, T.: Regularity criteria for the magnetohydrodynamic equations with partial viscous terms and the Leray-$\alpha $-MHD model. Kinet. Relat. Models 2 (2009), 293–305. | DOI | MR
[6] Foias, C., Holm, D.D., Titi, E.S.: The three dimensional viscous Camassa-Holm equations, and their relation to the Navier-Stokesequations and trubulence theory. J. Differential Equations 14 (2002), 1–35. | DOI | MR
[7] Frazier, M., Jawerth, B., Weiss, G.: Littlewood-Paley theoryand the study of function spaces. CBMS Regional Conference Series in Mathematics, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI,, 1991. | MR
[8] Gala, S., Guo, Z.: Remarks on logarithmical regularity criteria for the Navier–Stokes equations. J. Math. Phys. 52 (6) (2011), 9pp., 063503 | DOI | MR
[9] Hajaiej, H., Molinet, L., Ozawa, T., Wang, B.: Necessary and sufficient conditions for the fractional Gargliardo-Nirenberginequalities and applications to Navier-Stokes and generalized bosonequations. RIMS Kokyuroku Bessatsu 26 (2011), 159–175. | MR
[10] Holm, D.D.: Lagrangian averages, averaged Lagragians, and themean effects of fluctuations in fluid dynamics. Chaos 12 (2002), 518–530. | DOI | MR
[11] Ilyin, A.A., Lunasin, E.M., Titi, E.S.: A modified-Leray-$\alpha $ subgrid scale model of turbulence. Nonlinearity 19 (2006), 879–897. | DOI | MR
[12] Kato, T.: Liapunov Functions and Monotonicity in the Euler andNavier-Stokes Equations. Lecture Notes in Math., vol. 1450, Springer-Verlag, Berlin, 1990. | DOI | MR
[13] Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier-Stokes equations. Comm. Pure Appl. Math. 41 (1988), 891–907. | DOI | MR | Zbl
[14] Linshiz, J.S., Titi, E.S.: Analytical study of certainmagnetohydrodynamic-$\alpha $ models. J. Math. Phys. 48 (2007), 28pp., 065504. | DOI | MR
[15] Machihara, S., Ozawa, T.: Interpolation inequalities in Besovspace. Proc. Amer. Math. Soc. 131 (2003), 1553–1556. | DOI | MR
[16] Meyer, Y.: Oscillating patterns in some linear evolutionequations. Lecture Notes in Math., vol. 1871, 2006, pp. 101–187. | MR
[17] Zhou, Y.: Remarks on regularities for the 3D MHD equations. Discrete Contin. Dynam. Systems 12 (2005), 881–886. | DOI | MR
[18] Zhou, Y.: Regularity criteria for the generalized viscous MHDequations. Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (3) (2007), 491–505. | DOI | MR
[19] Zhou, Y., Fan, J.: On the Cauchy problem for a Leray-$\alpha $ model. Nonlinear Analysis Real World Applications (2010). | MR
[20] Zhou, Y., Fan, J.: Regularity criteria for a Lagrangian-averaged magnetohydrodynamic-$\alpha $ model. Nonlinear Anal. 74 (2011), 1410–1420. | DOI | MR
[21] Zhou, Y., Fan, J.: Regularity criteria for a magnetohydrodynamic-$\alpha $ model. Comm. Pure Appl. Anal. 10 (2011), 309–326. | DOI | MR
[22] Zhou, Y., Gala, S.: Logarithmically improved regularitycriteria for the Navier–Stokes equations in multiplier spaces. J. Math. Anal. Appl. 356 (2009), 498–501. | DOI | MR
[23] Zhou, Y., Gala, S.: Regularity criteria for the solutions tothe 3D MHD equations in the multiplier space. Z. Angew. Math. Phys. 61 (2010), 193–199. | DOI | MR
Cité par Sources :