Keywords: amenability; Connes-amenability; dual multiplier algebra; normal virtual operator diagonal
@article{10_5817_AM2019_1_31,
author = {Hayati, Bahman and Bodaghi, Abasalt and Amini, Massoud},
title = {Operator {Connes-amenability} of completely bounded multiplier {Banach} algebras},
journal = {Archivum mathematicum},
pages = {31--42},
year = {2019},
volume = {55},
number = {1},
doi = {10.5817/AM2019-1-31},
mrnumber = {3939062},
zbl = {07088756},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2019-1-31/}
}
TY - JOUR AU - Hayati, Bahman AU - Bodaghi, Abasalt AU - Amini, Massoud TI - Operator Connes-amenability of completely bounded multiplier Banach algebras JO - Archivum mathematicum PY - 2019 SP - 31 EP - 42 VL - 55 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2019-1-31/ DO - 10.5817/AM2019-1-31 LA - en ID - 10_5817_AM2019_1_31 ER -
%0 Journal Article %A Hayati, Bahman %A Bodaghi, Abasalt %A Amini, Massoud %T Operator Connes-amenability of completely bounded multiplier Banach algebras %J Archivum mathematicum %D 2019 %P 31-42 %V 55 %N 1 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2019-1-31/ %R 10.5817/AM2019-1-31 %G en %F 10_5817_AM2019_1_31
Hayati, Bahman; Bodaghi, Abasalt; Amini, Massoud. Operator Connes-amenability of completely bounded multiplier Banach algebras. Archivum mathematicum, Tome 55 (2019) no. 1, pp. 31-42. doi: 10.5817/AM2019-1-31
[1] Daws, M.: Connes-amenability of bidual and weighted semigroup algebras. Math. Scand. 99 (2006), 217–246. | DOI | MR
[2] Daws, M.: Multipliers, self-induced and dual Banach algebras. Dissertationes Math. (Rozprawy Mat.) 470 (2010), 62 pp. | MR
[3] Deutsch, E.: Matricial norms. Numer. Math. 19 (1) (1970), 73–84. | DOI | MR
[4] Effros, E.G., Ruan, Z.-J.: Operator Spaces. Clarendon Press, 2000. | MR
[5] Hayati, B., Amini, M.: Connes-amenability of multiplier Banach algebras. Kyoto J. Math. 50 (2010), 41–50. | DOI | MR
[6] Hayati, B., Amini, M.: Dual multiplier Banach algebras and Connes-amenability. Publ. Math. Debrecen 86 (2015), 169–182. | DOI | MR
[7] Helmeskii, A.Ya.: Homological essence of amenability in the sense of A. Connes: the injectivity of the predual bimodule. Math. USSR.-Sb. 68 (1991), 555–566. | DOI
[8] Johnson, B.E.: An introduction to the theory of centralizers. Proc. London Math. Soc. 14 (1964), 299–320. | DOI | MR
[9] Johnson, B.E.: Cohomology in Banach Algebras. Mem. Amer. Math. Soc. 127 (1972). | MR | Zbl
[10] Johnson, B.E.: Non-amenability of the Fourier algebra of a compact group. J. London Math. Soc. 50 (2) (1994), 361–374. | DOI | MR
[11] Johnson, B.E., Kadison, R.V., Ringrose, J.R.: Cohomology of operator algebras III. Bull. Soc. Math. France 100 (1972), 73–96. | DOI | MR
[12] Larsen, R.: An Introduction to the Theory of Mutipliers. Springer-Verlag, Berlin, 1971. | MR
[13] Oshobi, E.O., Pym, J.S.: Banach algebras whose duals consist of multipliers. Math. Proc. Cambridge Philos. Soc. 102 (1987), 481–505. | DOI | MR
[14] Ruan, Z.-J.: The operator amenability of $A(G)$. Amer. J. Math. 117 (1995), 1449–1474. | DOI | MR
[15] Runde, V.: Amenability for dual Banach algebras. Studia Math. 148 (2001), 47–66. | DOI | MR | Zbl
[16] Runde, V.: Lectures on Amenability. Lecture Notes in Math., vol. 1774, Springer-Verlag, Berlin-Heidelberg-New York, 2002. | MR | Zbl
[17] Runde, V.: Connes-amenability and normal, virtual diagonals for measure algebras. I. J. London Math. Soc. 67 (2003), 643–656. | DOI | MR
[18] Runde, V.: Connes-amenability and normal, virtual diagonals for measure algebras. II. Bull. Austral. Math. Soc. 68 (2003), 325–328. | DOI | MR
[19] Runde, V.: Dual Banach algebras: Connes-amenability, normal, virtual diagonals, and injectivity of the predual bimodule. Math. Scand. 95 (2004), 124–144. | DOI | MR
[20] Runde, V., Spronk, N.: Operator amenability of Fourier-Stieltjes algebras. Math. Proc. Cambridge Philos. Soc. 136 (2004), 675–686. | DOI | MR
[21] Runde, V., Uygul, F.: Connes-amenability of Fourier-Stieltjes algebras. Bull. London Math. Soc. (2015). | MR
[22] Spronk, N.: Measurable Schur multiplies and completely bounded multipliers of the Fourier algebras. Proc. London Math. Soc. 89 (2004), 161–192. | MR
Cité par Sources :