The group ring $\mathbb{K}F$ of Richard Thompson’s Group $F$ has no minimal non-zero ideals
Archivum mathematicum, Tome 55 (2019) no. 1, pp. 23-30
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We use a total order on Thompson’s group $F$ to show that the group ring $\mathbb{K}F$ has no minimal non-zero ideals.
We use a total order on Thompson’s group $F$ to show that the group ring $\mathbb{K}F$ has no minimal non-zero ideals.
DOI :
10.5817/AM2019-1-23
Classification :
20N99
Keywords: Thompson’s Group $F$; amenability; minimal ideal
Keywords: Thompson’s Group $F$; amenability; minimal ideal
@article{10_5817_AM2019_1_23,
author = {Donnelly, John},
title = {The group ring $\mathbb{K}F$ of {Richard} {Thompson{\textquoteright}s} {Group~}$F$ has no minimal non-zero ideals},
journal = {Archivum mathematicum},
pages = {23--30},
year = {2019},
volume = {55},
number = {1},
doi = {10.5817/AM2019-1-23},
mrnumber = {3939061},
zbl = {07088755},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2019-1-23/}
}
TY - JOUR
AU - Donnelly, John
TI - The group ring $\mathbb{K}F$ of Richard Thompson’s Group $F$ has no minimal non-zero ideals
JO - Archivum mathematicum
PY - 2019
SP - 23
EP - 30
VL - 55
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2019-1-23/
DO - 10.5817/AM2019-1-23
LA - en
ID - 10_5817_AM2019_1_23
ER -
Donnelly, John. The group ring $\mathbb{K}F$ of Richard Thompson’s Group $F$ has no minimal non-zero ideals. Archivum mathematicum, Tome 55 (2019) no. 1, pp. 23-30. doi: 10.5817/AM2019-1-23
[1] Brin, M., Squier, C.: Groups of piecewise linearhomeomorphisms of the real line. Invent. Math. 79 (3) (1985), 485–498. | DOI | MR
[2] Cannon, J.W., Floyd, W.J., Parry, W.R.: Introductory notes on Richard Thompson’s groups. Enseign. Math. 42 3–4) (1996), 215–256. | MR
[3] Frey, A.H.: Studies on Amenable Semigroups. Ph.D. thesis, University of Washington, 1960. | MR
Cité par Sources :