A new characterization of Suzuki groups
Archivum mathematicum, Tome 55 (2019) no. 1, pp. 17-21 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

One of the important questions that remains after the classification of the finite simple groups is how to recognize a simple group via specific properties. For example, authors have been able to use graphs associated to element orders and to number of elements with specific orders to determine simple groups up to isomorphism. In this paper, we prove that Suzuki groups $Sz(q)$, where $q\pm \sqrt{2q}+1$ is a prime number can be uniquely determined by the order of group and the number of elements with the same order.
One of the important questions that remains after the classification of the finite simple groups is how to recognize a simple group via specific properties. For example, authors have been able to use graphs associated to element orders and to number of elements with specific orders to determine simple groups up to isomorphism. In this paper, we prove that Suzuki groups $Sz(q)$, where $q\pm \sqrt{2q}+1$ is a prime number can be uniquely determined by the order of group and the number of elements with the same order.
DOI : 10.5817/AM2019-1-17
Classification : 20D06, 20D60
Keywords: element order; prime graph; Suzuki group
@article{10_5817_AM2019_1_17,
     author = {Ebrahimzadeh, Behnam and Mohammadyari, Reza},
     title = {A new characterization of {Suzuki} groups},
     journal = {Archivum mathematicum},
     pages = {17--21},
     year = {2019},
     volume = {55},
     number = {1},
     doi = {10.5817/AM2019-1-17},
     mrnumber = {3939060},
     zbl = {07088754},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2019-1-17/}
}
TY  - JOUR
AU  - Ebrahimzadeh, Behnam
AU  - Mohammadyari, Reza
TI  - A new characterization of Suzuki groups
JO  - Archivum mathematicum
PY  - 2019
SP  - 17
EP  - 21
VL  - 55
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2019-1-17/
DO  - 10.5817/AM2019-1-17
LA  - en
ID  - 10_5817_AM2019_1_17
ER  - 
%0 Journal Article
%A Ebrahimzadeh, Behnam
%A Mohammadyari, Reza
%T A new characterization of Suzuki groups
%J Archivum mathematicum
%D 2019
%P 17-21
%V 55
%N 1
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2019-1-17/
%R 10.5817/AM2019-1-17
%G en
%F 10_5817_AM2019_1_17
Ebrahimzadeh, Behnam; Mohammadyari, Reza. A new characterization of Suzuki groups. Archivum mathematicum, Tome 55 (2019) no. 1, pp. 17-21. doi: 10.5817/AM2019-1-17

[1] Chen, G.Y.: About Frobenius groups and $2$-Frobenius groups. J. Southwest China Normal Univ. 20 (5) (1995), 485–487.

[2] Ebrahimzadeh, B., Iranmanesh, A., Parvizi Mosaed, H.: A new characterization of Ree group $^2G_2 (q)$ by the order of group and number of elements with same order. Int. J. Group Theory 6 (4) (2017), 1–6. | MR

[3] Frobenius, G.: Verallgemeinerung des Sylowschen Satze. Berliner Sitz (1895), 981–983.

[4] Gorenstein, D.: Finite Groups. Harper and Row, New York, 1980. | MR | Zbl

[5] Khalili Asboei, A., Amiri, S.S., Iranmanesh, A., Tehranian, A.: A new characterization of sporadic simple groups by NSE and order. J. Algebra Appl. 12 (2) (2013), 1250158. | DOI | MR

[6] Khalili Asboei, A., Iranmanesh, A.: Characterization of the linear groups $L_2(p)$. Czechoslovak Math. J. 64 (139) (2014), no. 459–464. | MR

[7] Parvizi Mosaed, H., Iranmanesh, A., Tehranian, A.: Characterization of suzuki group by nse and order of group. Bull. Korean Math. Soc. 53 (3) (2016), 651–656. | DOI | MR

[8] Shao, C.G., Shi, W., Jiang, Q.H.: Characterization of simple $K_4$-groups. Front Math. China 3 (3) (2008), 355–370. | DOI | MR | Zbl

[9] Suzuki, M.: On a class of doubly transitive groups. Ann. of Math. 2 (75) (1962), 105–145. | DOI | MR

[10] Wiliams, J.S.: Prime graph components of finite groups. J. Algebra 69 (2) (1981), 487–512. | DOI | MR

Cité par Sources :