Bounds for the characteristic rank and cup-length of oriented Grassmann manifolds
Archivum mathematicum, Tome 54 (2018) no. 5, pp. 313-329
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We estimate the characteristic rank of the canonical $k$–plane bundle over the oriented Grassmann manifold $\widetilde{G}_{n,k}$. We then use it to compute uniform upper bounds for the $\mathbb{Z}_2$–cup-length of $\widetilde{G}_{n,k}$ for $n$ belonging to certain intervals.
We estimate the characteristic rank of the canonical $k$–plane bundle over the oriented Grassmann manifold $\widetilde{G}_{n,k}$. We then use it to compute uniform upper bounds for the $\mathbb{Z}_2$–cup-length of $\widetilde{G}_{n,k}$ for $n$ belonging to certain intervals.
DOI :
10.5817/AM2018-5-313
Classification :
55R25, 57R20, 57T15
Keywords: cup-length; Grassmann manifold; characteristic rank; Stiefel-Whitney class
Keywords: cup-length; Grassmann manifold; characteristic rank; Stiefel-Whitney class
@article{10_5817_AM2018_5_313,
author = {Rusin, Tom\'a\v{s}},
title = {Bounds for the characteristic rank and cup-length of oriented {Grassmann} manifolds},
journal = {Archivum mathematicum},
pages = {313--329},
year = {2018},
volume = {54},
number = {5},
doi = {10.5817/AM2018-5-313},
mrnumber = {3887357},
zbl = {06997358},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2018-5-313/}
}
TY - JOUR AU - Rusin, Tomáš TI - Bounds for the characteristic rank and cup-length of oriented Grassmann manifolds JO - Archivum mathematicum PY - 2018 SP - 313 EP - 329 VL - 54 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2018-5-313/ DO - 10.5817/AM2018-5-313 LA - en ID - 10_5817_AM2018_5_313 ER -
Rusin, Tomáš. Bounds for the characteristic rank and cup-length of oriented Grassmann manifolds. Archivum mathematicum, Tome 54 (2018) no. 5, pp. 313-329. doi: 10.5817/AM2018-5-313
Cité par Sources :