Bounds for the characteristic rank and cup-length of oriented Grassmann manifolds
Archivum mathematicum, Tome 54 (2018) no. 5, pp. 313-329 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We estimate the characteristic rank of the canonical $k$–plane bundle over the oriented Grassmann manifold $\widetilde{G}_{n,k}$. We then use it to compute uniform upper bounds for the $\mathbb{Z}_2$–cup-length of $\widetilde{G}_{n,k}$ for $n$ belonging to certain intervals.
We estimate the characteristic rank of the canonical $k$–plane bundle over the oriented Grassmann manifold $\widetilde{G}_{n,k}$. We then use it to compute uniform upper bounds for the $\mathbb{Z}_2$–cup-length of $\widetilde{G}_{n,k}$ for $n$ belonging to certain intervals.
DOI : 10.5817/AM2018-5-313
Classification : 55R25, 57R20, 57T15
Keywords: cup-length; Grassmann manifold; characteristic rank; Stiefel-Whitney class
@article{10_5817_AM2018_5_313,
     author = {Rusin, Tom\'a\v{s}},
     title = {Bounds for the characteristic rank and cup-length of oriented {Grassmann} manifolds},
     journal = {Archivum mathematicum},
     pages = {313--329},
     year = {2018},
     volume = {54},
     number = {5},
     doi = {10.5817/AM2018-5-313},
     mrnumber = {3887357},
     zbl = {06997358},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2018-5-313/}
}
TY  - JOUR
AU  - Rusin, Tomáš
TI  - Bounds for the characteristic rank and cup-length of oriented Grassmann manifolds
JO  - Archivum mathematicum
PY  - 2018
SP  - 313
EP  - 329
VL  - 54
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2018-5-313/
DO  - 10.5817/AM2018-5-313
LA  - en
ID  - 10_5817_AM2018_5_313
ER  - 
%0 Journal Article
%A Rusin, Tomáš
%T Bounds for the characteristic rank and cup-length of oriented Grassmann manifolds
%J Archivum mathematicum
%D 2018
%P 313-329
%V 54
%N 5
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2018-5-313/
%R 10.5817/AM2018-5-313
%G en
%F 10_5817_AM2018_5_313
Rusin, Tomáš. Bounds for the characteristic rank and cup-length of oriented Grassmann manifolds. Archivum mathematicum, Tome 54 (2018) no. 5, pp. 313-329. doi: 10.5817/AM2018-5-313

[1] Borel, A.: La cohomologie mod $2$ de certains espaces homogènes. Comment. Math. Helv. 27 (1953), 165–197. | DOI | MR

[2] Fukaya, T.: Gröbner bases of oriented Grassmann manifolds. Homology, Homotopy Appl. 10 (2008), 195–209. | DOI | MR

[3] Jaworowski, J.: An additive basis for the cohomology of real Grassmannians. Lecture Notes in Math., vol. 1474, Springer, Berlin, 1991, Algebraic topology Poznań 1989, 231–234. | DOI | MR

[4] Korbaš, J.: The cup-length of the oriented Grassmannians vs a new bound for zero-cobordant manifolds. Bull. Belg. Math. Soc. Simon Stevin 17 (2010), 69–81. | MR

[5] Korbaš, J.: The characteristic rank and cup-length in oriented Grassmann manifolds. Osaka J. Math. 52 (2015), 1163–1172. | MR

[6] Korbaš, J., Rusin, T.: A note on the $\mathbb{Z}_2$-cohomology algebra of oriented Grassmann manifolds. Rend. Circ. Mat. Palermo (2) 65 (2016), 507–517. | DOI | MR

[7] Korbaš, J., Rusin, T.: On the cohomology of oriented Grassmann manifolds. Homology, Homotopy, Appl. 18 (2) (2016), 71–84. | DOI | MR

[8] Milnor, J., Stasheff, J.: Characteristic Classes. Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. | MR | Zbl

[9] Naolekar, A.C., Thakur, A.S.: Note on the characteristic rank of vector bundles. Math. Slovaca 64 (2014), 1525–1540. | DOI | MR

[10] Petrović, Z.Z., Prvulović, B. I., Radovanović, M.: Characteristic rank of canonical vector bundles over oriented Grassmann manifolds $\widetilde{G}_{n,3}$. Topology Appl. 230 (2017), 114–121. | MR

[11] Rusin, T.: A note on the characteristic rank of oriented Grassmann manifolds. Topology Appl. 216 (2017), 48–58. | DOI | MR

[12] Stong, R.E.: Semicharacteristics of oriented Grassmannians. J. Pure Appl. Algebra 33 (1984), 97–103. | DOI | MR

Cité par Sources :