Calculus on symplectic manifolds
Archivum mathematicum, Tome 54 (2018) no. 5, pp. 265-280 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

On a symplectic manifold, there is a natural elliptic complex replacing the de Rham complex. It can be coupled to a vector bundle with connection and, when the curvature of this connection is constrained to be a multiple of the symplectic form, we find a new complex. In particular, on complex projective space with its Fubini–Study form and connection, we can build a series of differential complexes akin to the Bernstein–Gelfand–Gelfand complexes from parabolic differential geometry.
On a symplectic manifold, there is a natural elliptic complex replacing the de Rham complex. It can be coupled to a vector bundle with connection and, when the curvature of this connection is constrained to be a multiple of the symplectic form, we find a new complex. In particular, on complex projective space with its Fubini–Study form and connection, we can build a series of differential complexes akin to the Bernstein–Gelfand–Gelfand complexes from parabolic differential geometry.
DOI : 10.5817/AM2018-5-265
Classification : 53B35, 53D05
Keywords: symplectic structure; Kähler structure; tractor calculus; exact complex; BGG machinery
@article{10_5817_AM2018_5_265,
     author = {Eastwood, Michael and Slov\'ak, Jan},
     title = {Calculus on symplectic manifolds},
     journal = {Archivum mathematicum},
     pages = {265--280},
     year = {2018},
     volume = {54},
     number = {5},
     doi = {10.5817/AM2018-5-265},
     mrnumber = {3887354},
     zbl = {06997355},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2018-5-265/}
}
TY  - JOUR
AU  - Eastwood, Michael
AU  - Slovák, Jan
TI  - Calculus on symplectic manifolds
JO  - Archivum mathematicum
PY  - 2018
SP  - 265
EP  - 280
VL  - 54
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2018-5-265/
DO  - 10.5817/AM2018-5-265
LA  - en
ID  - 10_5817_AM2018_5_265
ER  - 
%0 Journal Article
%A Eastwood, Michael
%A Slovák, Jan
%T Calculus on symplectic manifolds
%J Archivum mathematicum
%D 2018
%P 265-280
%V 54
%N 5
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2018-5-265/
%R 10.5817/AM2018-5-265
%G en
%F 10_5817_AM2018_5_265
Eastwood, Michael; Slovák, Jan. Calculus on symplectic manifolds. Archivum mathematicum, Tome 54 (2018) no. 5, pp. 265-280. doi: 10.5817/AM2018-5-265

[1] Bailey, T.N., Eastwood, M.G., Gover, A.R.: Thomas’s structure bundle for conformal, projective and related structures. Rocky Mountain J. Math. 24 (1994), 1191–1217. | DOI | MR | Zbl

[2] Bryant, R.L., Eastwood, M.G., Gover, A.R., Neusser, K.: Some differential complexes within and beyond parabolic geometry. arXiv:1112.2142.

[3] Cahen, M., Schwachofer, L. J.: Special symplectic connections. J. Differential Geom. 83 (2009), 229–271. | DOI | MR

[4] Čap, A., Salač, T.: Parabolic conformally symplectic structures I; definition and distinguished connections. Forum Math., to appear, arXiv:1605.01161. | MR

[5] Čap, A., Salač, T.: Parabolic conformally symplectic structures II; parabolic contactization. Ann. Mat. Pura Appl., to appear, arXiv:1605.01897. | MR

[6] Čap, A., Salač, T.: Parabolic conformally symplectic structures III; invariant differential operators and complexes. arXiv:1701.01306. | MR

[7] Čap, A., Salač, T.: Pushing down the Rumin complex to conformally symplectic quotients. Differential Geom. Appl. 35 (2014), 255–265, arXiv:1312.2712. | DOI | MR

[8] Čap, A., Slovák, J.: Parabolic Geometries I: Background and General Theory. Math. Surveys Monogr. 154 (209). | MR

[9] Eastwood, M.G.: Extensions of the coeffective complex. Illinois J. Math. 57 (2013), 373–381. | DOI | MR

[10] Eastwood, M.G., Goldschmidt, H.: Zero-energy fields on complex projective space. J. Differential Geom. 94 (2013), 129–157. | DOI | MR

[11] Eastwood, M.G., Slovák, J.: Conformally Fedosov manifolds. arXiv:1210. 5597.

[12] Gelfand, I.M., Retakh, V.S., Shubin, M.A.: Fedosov manifolds. Adv. Math. 136 (1998), 104–140. | DOI | MR | Zbl

[13] Knapp, A.W.: Lie Groups, Lie Algebras, and Cohomology. Princeton University Press, 1988. | MR

[14] Kostant, B.: Lie algebra cohomology and the generalized Borel–Weil theorem. Ann. of Math. (2) 74 (1961), 329–387. | DOI | MR | Zbl

[15] Penrose, R., Rindler, W.: Spinors and Space-time. vol. 1, Cambridge University Press, 1984. | MR

[16] Seshadri, N.:

[17] Smith, R.T.: Examples of elliptic complexes. Bull. Amer. Math. Soc. (N.S.) 82 (1976), 294–299. | DOI | MR

[18] Tseng, L.-S., Yau, S.-T.: Cohomology and Hodge theory on symplectic manifolds: I and II. J. Differential Geom. 91 (2012), 383–416, 417–443. | DOI | MR

Cité par Sources :