Keywords: symplectic structure; Kähler structure; tractor calculus; exact complex; BGG machinery
@article{10_5817_AM2018_5_265,
author = {Eastwood, Michael and Slov\'ak, Jan},
title = {Calculus on symplectic manifolds},
journal = {Archivum mathematicum},
pages = {265--280},
year = {2018},
volume = {54},
number = {5},
doi = {10.5817/AM2018-5-265},
mrnumber = {3887354},
zbl = {06997355},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2018-5-265/}
}
Eastwood, Michael; Slovák, Jan. Calculus on symplectic manifolds. Archivum mathematicum, Tome 54 (2018) no. 5, pp. 265-280. doi: 10.5817/AM2018-5-265
[1] Bailey, T.N., Eastwood, M.G., Gover, A.R.: Thomas’s structure bundle for conformal, projective and related structures. Rocky Mountain J. Math. 24 (1994), 1191–1217. | DOI | MR | Zbl
[2] Bryant, R.L., Eastwood, M.G., Gover, A.R., Neusser, K.: Some differential complexes within and beyond parabolic geometry. arXiv:1112.2142.
[3] Cahen, M., Schwachofer, L. J.: Special symplectic connections. J. Differential Geom. 83 (2009), 229–271. | DOI | MR
[4] Čap, A., Salač, T.: Parabolic conformally symplectic structures I; definition and distinguished connections. Forum Math., to appear, arXiv:1605.01161. | MR
[5] Čap, A., Salač, T.: Parabolic conformally symplectic structures II; parabolic contactization. Ann. Mat. Pura Appl., to appear, arXiv:1605.01897. | MR
[6] Čap, A., Salač, T.: Parabolic conformally symplectic structures III; invariant differential operators and complexes. arXiv:1701.01306. | MR
[7] Čap, A., Salač, T.: Pushing down the Rumin complex to conformally symplectic quotients. Differential Geom. Appl. 35 (2014), 255–265, arXiv:1312.2712. | DOI | MR
[8] Čap, A., Slovák, J.: Parabolic Geometries I: Background and General Theory. Math. Surveys Monogr. 154 (209). | MR
[9] Eastwood, M.G.: Extensions of the coeffective complex. Illinois J. Math. 57 (2013), 373–381. | DOI | MR
[10] Eastwood, M.G., Goldschmidt, H.: Zero-energy fields on complex projective space. J. Differential Geom. 94 (2013), 129–157. | DOI | MR
[11] Eastwood, M.G., Slovák, J.: Conformally Fedosov manifolds. arXiv:1210. 5597.
[12] Gelfand, I.M., Retakh, V.S., Shubin, M.A.: Fedosov manifolds. Adv. Math. 136 (1998), 104–140. | DOI | MR | Zbl
[13] Knapp, A.W.: Lie Groups, Lie Algebras, and Cohomology. Princeton University Press, 1988. | MR
[14] Kostant, B.: Lie algebra cohomology and the generalized Borel–Weil theorem. Ann. of Math. (2) 74 (1961), 329–387. | DOI | MR | Zbl
[15] Penrose, R., Rindler, W.: Spinors and Space-time. vol. 1, Cambridge University Press, 1984. | MR
[16] Seshadri, N.:
[17] Smith, R.T.: Examples of elliptic complexes. Bull. Amer. Math. Soc. (N.S.) 82 (1976), 294–299. | DOI | MR
[18] Tseng, L.-S., Yau, S.-T.: Cohomology and Hodge theory on symplectic manifolds: I and II. J. Differential Geom. 91 (2012), 383–416, 417–443. | DOI | MR
Cité par Sources :