Calculus on symplectic manifolds
Archivum mathematicum, Tome 54 (2018) no. 5, pp. 265-280
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
On a symplectic manifold, there is a natural elliptic complex replacing the de Rham complex. It can be coupled to a vector bundle with connection and, when the curvature of this connection is constrained to be a multiple of the symplectic form, we find a new complex. In particular, on complex projective space with its Fubini–Study form and connection, we can build a series of differential complexes akin to the Bernstein–Gelfand–Gelfand complexes from parabolic differential geometry.
DOI :
10.5817/AM2018-5-265
Classification :
53B35, 53D05
Keywords: symplectic structure; Kähler structure; tractor calculus; exact complex; BGG machinery
Keywords: symplectic structure; Kähler structure; tractor calculus; exact complex; BGG machinery
@article{10_5817_AM2018_5_265,
author = {Eastwood, Michael and Slov\'ak, Jan},
title = {Calculus on symplectic manifolds},
journal = {Archivum mathematicum},
pages = {265--280},
publisher = {mathdoc},
volume = {54},
number = {5},
year = {2018},
doi = {10.5817/AM2018-5-265},
mrnumber = {3887354},
zbl = {06997355},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2018-5-265/}
}
Eastwood, Michael; Slovák, Jan. Calculus on symplectic manifolds. Archivum mathematicum, Tome 54 (2018) no. 5, pp. 265-280. doi: 10.5817/AM2018-5-265
Cité par Sources :