The affine approach to homogeneous geodesics in homogeneous Finsler spaces
Archivum mathematicum, Tome 54 (2018) no. 5, pp. 257-263 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In the recent paper [Yan, Z.: Existence of homogeneous geodesics on homogeneous Finsler spaces of odd dimension, Monatsh. Math. 182,1, 165–171 (2017)], it was claimed that any homogeneous Finsler space of odd dimension admits a homogeneous geodesic through any point. However, the proof contains a serious gap. The situation is a bit delicate, because the statement is correct. In the present paper, the incorrect part in this proof is indicated. Further, it is shown that homogeneous geodesics in homogeneous Finsler spaces can be studied by another method developed in earlier works by the author for homogeneous affine manifolds. This method is adapted for Finsler geometry and the statement is proved correctly.
In the recent paper [Yan, Z.: Existence of homogeneous geodesics on homogeneous Finsler spaces of odd dimension, Monatsh. Math. 182,1, 165–171 (2017)], it was claimed that any homogeneous Finsler space of odd dimension admits a homogeneous geodesic through any point. However, the proof contains a serious gap. The situation is a bit delicate, because the statement is correct. In the present paper, the incorrect part in this proof is indicated. Further, it is shown that homogeneous geodesics in homogeneous Finsler spaces can be studied by another method developed in earlier works by the author for homogeneous affine manifolds. This method is adapted for Finsler geometry and the statement is proved correctly.
DOI : 10.5817/AM2018-5-257
Classification : 53C22, 53C30, 53C60
Keywords: homogeneous space; Finsler space; Killing vector field; homogeneous geodesic
@article{10_5817_AM2018_5_257,
     author = {Du\v{s}ek, Zden\v{e}k},
     title = {The affine approach to homogeneous geodesics in homogeneous {Finsler} spaces},
     journal = {Archivum mathematicum},
     pages = {257--263},
     year = {2018},
     volume = {54},
     number = {5},
     doi = {10.5817/AM2018-5-257},
     mrnumber = {3887353},
     zbl = {06997354},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2018-5-257/}
}
TY  - JOUR
AU  - Dušek, Zdeněk
TI  - The affine approach to homogeneous geodesics in homogeneous Finsler spaces
JO  - Archivum mathematicum
PY  - 2018
SP  - 257
EP  - 263
VL  - 54
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2018-5-257/
DO  - 10.5817/AM2018-5-257
LA  - en
ID  - 10_5817_AM2018_5_257
ER  - 
%0 Journal Article
%A Dušek, Zdeněk
%T The affine approach to homogeneous geodesics in homogeneous Finsler spaces
%J Archivum mathematicum
%D 2018
%P 257-263
%V 54
%N 5
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2018-5-257/
%R 10.5817/AM2018-5-257
%G en
%F 10_5817_AM2018_5_257
Dušek, Zdeněk. The affine approach to homogeneous geodesics in homogeneous Finsler spaces. Archivum mathematicum, Tome 54 (2018) no. 5, pp. 257-263. doi: 10.5817/AM2018-5-257

[1] Bao, D., Chern, S.-S., Shen, Z.: An Introduction to Riemann-Finsler Geometry. Springer Science+Business Media, New York, 2000. | MR | Zbl

[2] Deng, S.: Homogeneous Finsler Spaces. Springer Science+Business Media, New York, 2012. | MR

[3] Dušek, Z.: On the reparametrization of affine homogeneous geodesics. Differential Geometry, Proceedings of the VIII International Colloquium World Scientific (Singapore) (López, J.A. Álvarez, García-Río, E., eds.), 2009, pp. 217–226. | MR

[4] Dušek, Z.: Existence of homogeneous geodesics in homogeneous pseudo-Riemannian and affine manifolds. J. Geom. Phys. 60 (2010), 687–689. | DOI | MR

[5] Dušek, Z.: The existence of homogeneous geodesics in special homogeneous Finsler spaces. Matematički Vesnik (2018). | MR

[6] Dušek, Z., Kowalski, O.: Light-like homogeneous geodesics and the Geodesic Lemma for any signature. Publ. Math. Debrecen 71 (2007), 245–252. | MR

[7] Dušek, Z., Kowalski, O., Vlášek, Z.: Homogeneous geodesics in homogeneous affine manifolds. Result. Math. 54 (2009), 273–288. | DOI | MR

[8] Figueroa-O’Farrill, J., Meessen, P., Philip, S.: Homogeneity and plane-wave limits. J. High Energy Physics 05, 050 (2005). | DOI | MR

[9] Kowalski, O., Szenthe, J.: On the existence of homogeneous geodesics in homogeneous Riemannian manifolds. Geom. Dedicata 81 (2000), 209–214, Erratum: Geom. Dedicata 84, 331–332 (2001). | DOI | MR | Zbl

[10] Kowalski, O., Vanhecke, L.: Riemannian manifolds with homogeneous geodesics. Boll. Un. Mat. Ital. B (7) 5 (1991), 189–246. | MR | Zbl

[11] Latifi, D.: Homogeneous geodesics in homogeneous Finsler spaces. J. Geom. Phys. 57 (2007), 1421–1433. | DOI | MR

[12] Yan, Z.: Existence of homogeneous geodesics on homogeneous Finsler spaces of odd dimension. Monatsh. Math. 182 (1) (2017), 165–171. | DOI | MR

[13] Yan, Z., Huang, L.: On the existence of homogeneous geodesic in homogeneous Finsler space. J. Geom. Phys. 124 (2018), 264–267. | DOI | MR

Cité par Sources :