Keywords: homogeneous space; Finsler space; Killing vector field; homogeneous geodesic
@article{10_5817_AM2018_5_257,
author = {Du\v{s}ek, Zden\v{e}k},
title = {The affine approach to homogeneous geodesics in homogeneous {Finsler} spaces},
journal = {Archivum mathematicum},
pages = {257--263},
year = {2018},
volume = {54},
number = {5},
doi = {10.5817/AM2018-5-257},
mrnumber = {3887353},
zbl = {06997354},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2018-5-257/}
}
TY - JOUR AU - Dušek, Zdeněk TI - The affine approach to homogeneous geodesics in homogeneous Finsler spaces JO - Archivum mathematicum PY - 2018 SP - 257 EP - 263 VL - 54 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2018-5-257/ DO - 10.5817/AM2018-5-257 LA - en ID - 10_5817_AM2018_5_257 ER -
Dušek, Zdeněk. The affine approach to homogeneous geodesics in homogeneous Finsler spaces. Archivum mathematicum, Tome 54 (2018) no. 5, pp. 257-263. doi: 10.5817/AM2018-5-257
[1] Bao, D., Chern, S.-S., Shen, Z.: An Introduction to Riemann-Finsler Geometry. Springer Science+Business Media, New York, 2000. | MR | Zbl
[2] Deng, S.: Homogeneous Finsler Spaces. Springer Science+Business Media, New York, 2012. | MR
[3] Dušek, Z.: On the reparametrization of affine homogeneous geodesics. Differential Geometry, Proceedings of the VIII International Colloquium World Scientific (Singapore) (López, J.A. Álvarez, García-Río, E., eds.), 2009, pp. 217–226. | MR
[4] Dušek, Z.: Existence of homogeneous geodesics in homogeneous pseudo-Riemannian and affine manifolds. J. Geom. Phys. 60 (2010), 687–689. | DOI | MR
[5] Dušek, Z.: The existence of homogeneous geodesics in special homogeneous Finsler spaces. Matematički Vesnik (2018). | MR
[6] Dušek, Z., Kowalski, O.: Light-like homogeneous geodesics and the Geodesic Lemma for any signature. Publ. Math. Debrecen 71 (2007), 245–252. | MR
[7] Dušek, Z., Kowalski, O., Vlášek, Z.: Homogeneous geodesics in homogeneous affine manifolds. Result. Math. 54 (2009), 273–288. | DOI | MR
[8] Figueroa-O’Farrill, J., Meessen, P., Philip, S.: Homogeneity and plane-wave limits. J. High Energy Physics 05, 050 (2005). | DOI | MR
[9] Kowalski, O., Szenthe, J.: On the existence of homogeneous geodesics in homogeneous Riemannian manifolds. Geom. Dedicata 81 (2000), 209–214, Erratum: Geom. Dedicata 84, 331–332 (2001). | DOI | MR | Zbl
[10] Kowalski, O., Vanhecke, L.: Riemannian manifolds with homogeneous geodesics. Boll. Un. Mat. Ital. B (7) 5 (1991), 189–246. | MR | Zbl
[11] Latifi, D.: Homogeneous geodesics in homogeneous Finsler spaces. J. Geom. Phys. 57 (2007), 1421–1433. | DOI | MR
[12] Yan, Z.: Existence of homogeneous geodesics on homogeneous Finsler spaces of odd dimension. Monatsh. Math. 182 (1) (2017), 165–171. | DOI | MR
[13] Yan, Z., Huang, L.: On the existence of homogeneous geodesic in homogeneous Finsler space. J. Geom. Phys. 124 (2018), 264–267. | DOI | MR
Cité par Sources :