Keywords: natural bundles; natural operations
@article{10_5817_AM2018_4_239,
author = {Navarro, A. and Navarro, J. and Tejero Prieto, C.},
title = {Natural operations on holomorphic forms},
journal = {Archivum mathematicum},
pages = {239--254},
year = {2018},
volume = {54},
number = {4},
doi = {10.5817/AM2018-4-239},
mrnumber = {3887363},
zbl = {06997353},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2018-4-239/}
}
TY - JOUR AU - Navarro, A. AU - Navarro, J. AU - Tejero Prieto, C. TI - Natural operations on holomorphic forms JO - Archivum mathematicum PY - 2018 SP - 239 EP - 254 VL - 54 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2018-4-239/ DO - 10.5817/AM2018-4-239 LA - en ID - 10_5817_AM2018_4_239 ER -
Navarro, A.; Navarro, J.; Tejero Prieto, C. Natural operations on holomorphic forms. Archivum mathematicum, Tome 54 (2018) no. 4, pp. 239-254. doi: 10.5817/AM2018-4-239
[1] Atiyah, M.: Complex analytic connections in fibre bundles. Trans. Amer. Math. Soc. 85 (1957), 181–207. | DOI | MR
[2] Atiyah, M., Bott, R., Patodi, V.K.: On the heat equation and the index theorem. Invent. Math. 19 (1973), 279–330. | DOI | MR
[3] Bernig, A.: Natural operations on differential forms on contact manifolds. Differential Geom. Appl. 50 (2017), 34–51. | DOI | MR
[4] Epstein, D.B.A., Thurston, W.P.: Transformation groups and natural bundles. Proc. Lond. Math. Soc. 38 (1976), 219–236. | MR
[5] Freed, D.S., Hopkins, M.J.: Chern-Weil forms and abstract homotopy theory. Bull. Amer. Math. Soc. 50 (2013), 431–468. | DOI | MR
[6] Goodman, R., Wallach, N.: Representation and Invariants of the Classical Groups. Cambridge University Press, 1998. | MR
[7] Gordillo, A., Navarro, J., Sancho, P.: A remark on the invariant theory of real Lie groups. Colloq. Math., to appear.
[8] Katsylo, P.I., Timashev, D.A.: Natural differential operations on manifolds: an algebraic approach. Sbornik: Mathematics 199 (2008), 1481–1503. | DOI | MR
[9] Kolář, I., Michor, P.W., Slovák, J.: Natural Operations in Differential Geometry. Springer-Verlag, Berlin, 1993. | MR
[10] Krupka, D., Mikolášová, V.: On the uniqueness of some differential invariants: $\,d, [,], \nabla $. Czechoslovak Math. J. 34 (1984), 588–597. | MR
[11] Mason-Brown, L.: Natural structures in differential geometry. private communication.
[12] Navarro, J., Sancho, J.B.: Peetre-Slovák’s theorem revisited. arXiv: 1411.7499.
[13] Navarro, J., Sancho, J.B.: Natural operations on differential forms. Differential Geom. Appl. 38 (2015), 159–174. | DOI | MR
[14] Nijenhuis, A.: Natural bundles and their general properties. Differential Geometry in honor of K. Yano, Kinokuniya, Tokyo, 1972, pp. 317–334. | MR | Zbl
[15] Palais, R.S.: Natural operations on differential forms. Trans. Amer. Math. Soc. 92 (1959), 125–141. | DOI | MR
[16] Terng, C.L.: Natural vector bundles and natural differential operators. Amer. J. Math. 100 (1978), 775–828. | DOI | MR | Zbl
[17] Timashev, D.A.: On differential characteristic classes of metrics and connections. Fundam. Priklad. Mat. 20 (2015), 167–183. | MR
Cité par Sources :