Keywords: spectra of graphs; squares of graphs; distance regular graphs; association scheme; metrically regular graphs; bipartite graphs; Kneser graph
@article{10_5817_AM2018_4_227,
author = {Vetch\'y, Vladim{\'\i}r},
title = {Metrically regular square of metrically regular bipartite graphs of diameter $D = 7$},
journal = {Archivum mathematicum},
pages = {227--237},
year = {2018},
volume = {54},
number = {4},
doi = {10.5817/AM2018-4-227},
mrnumber = {3887362},
zbl = {06997352},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2018-4-227/}
}
TY - JOUR AU - Vetchý, Vladimír TI - Metrically regular square of metrically regular bipartite graphs of diameter $D = 7$ JO - Archivum mathematicum PY - 2018 SP - 227 EP - 237 VL - 54 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2018-4-227/ DO - 10.5817/AM2018-4-227 LA - en ID - 10_5817_AM2018_4_227 ER -
Vetchý, Vladimír. Metrically regular square of metrically regular bipartite graphs of diameter $D = 7$. Archivum mathematicum, Tome 54 (2018) no. 4, pp. 227-237. doi: 10.5817/AM2018-4-227
[1] Bannai, E, Ito, T.: Algebraic Combinatorics I. The Bejamin/Cummings Publishing Company, California, 1984. | MR
[2] Barile, M., Weisstein, E.W.: Kneser Graph. From MathWorld-A Wolfram Web Resource, http://mathworld.wolfram.com/KneserGraph.html
[3] Bose, R.C., Shimamoto, T.: Classification and analysis of partially balanced incomplete block design with two association classes. J. Amer. Statist. Assoc. 47 (1952), 151–184. | DOI | MR
[4] Bose, R.C., Shimamoto, T.: On linear associative algebras corresponding to association schemes of partially balanced designs. Ann. Math. Statist. 30 (1959), 21–36. | DOI | MR
[5] Cvetković, D.M., Doob, M., Sachs, H.: Spectra of graphs. Deutscher Verlag der Wissenchaften, Berlin, 1980. | MR
[6] Sachs, H.: Über selbstkomplement are Graphen. Publ. Math. Debrecen 9 (1962), 270–288. | MR
[7] Smith, J.H.: Some properties of the spectrum of a graph. Comb.Struct. and their Applications, Gordon and Breach, Sci. Publ. Inc., New York-London-Paris, 1970, pp. 403–406. | MR | Zbl
[8] Vetchý, V.: Metrically regular square of metrically regular bigraphs I. Arch. Math. (Brno) 27b (1991), 183–197. | MR
[9] Vetchý, V.: Metrically regular square of metrically regular bigraphs II. Arch. Math. (Brno) 28 (1992), 17–24. | MR
[10] Vetchý, V.: Metrically regular square of metrically regular bipartite graphs of diameter $D=6$. Arch. Math. (Brno) 29 (1993), 29–38. | MR
Cité par Sources :