Metrically regular square of metrically regular bipartite graphs of diameter $D = 7$
Archivum mathematicum, Tome 54 (2018) no. 4, pp. 227-237
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The present paper deals with the spectra of powers of metrically regular graphs. We prove that there is only two tables of the parameters of an association scheme so that the corresponding metrically regular bipartite graph of diameter $D = 7$ (8 distinct eigenvalues of the adjacency matrix) has the metrically regular square. The results deal with the graphs of the diameter $D 7$ see [8], [9] and [10].
The present paper deals with the spectra of powers of metrically regular graphs. We prove that there is only two tables of the parameters of an association scheme so that the corresponding metrically regular bipartite graph of diameter $D = 7$ (8 distinct eigenvalues of the adjacency matrix) has the metrically regular square. The results deal with the graphs of the diameter $D 7$ see [8], [9] and [10].
DOI : 10.5817/AM2018-4-227
Classification : 05C50
Keywords: spectra of graphs; squares of graphs; distance regular graphs; association scheme; metrically regular graphs; bipartite graphs; Kneser graph
@article{10_5817_AM2018_4_227,
     author = {Vetch\'y, Vladim{\'\i}r},
     title = {Metrically regular square of metrically regular bipartite graphs of diameter $D = 7$},
     journal = {Archivum mathematicum},
     pages = {227--237},
     year = {2018},
     volume = {54},
     number = {4},
     doi = {10.5817/AM2018-4-227},
     mrnumber = {3887362},
     zbl = {06997352},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2018-4-227/}
}
TY  - JOUR
AU  - Vetchý, Vladimír
TI  - Metrically regular square of metrically regular bipartite graphs of diameter $D = 7$
JO  - Archivum mathematicum
PY  - 2018
SP  - 227
EP  - 237
VL  - 54
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2018-4-227/
DO  - 10.5817/AM2018-4-227
LA  - en
ID  - 10_5817_AM2018_4_227
ER  - 
%0 Journal Article
%A Vetchý, Vladimír
%T Metrically regular square of metrically regular bipartite graphs of diameter $D = 7$
%J Archivum mathematicum
%D 2018
%P 227-237
%V 54
%N 4
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2018-4-227/
%R 10.5817/AM2018-4-227
%G en
%F 10_5817_AM2018_4_227
Vetchý, Vladimír. Metrically regular square of metrically regular bipartite graphs of diameter $D = 7$. Archivum mathematicum, Tome 54 (2018) no. 4, pp. 227-237. doi: 10.5817/AM2018-4-227

[1] Bannai, E, Ito, T.: Algebraic Combinatorics I. The Bejamin/Cummings Publishing Company, California, 1984. | MR

[2] Barile, M., Weisstein, E.W.: Kneser Graph. From MathWorld-A Wolfram Web Resource, http://mathworld.wolfram.com/KneserGraph.html

[3] Bose, R.C., Shimamoto, T.: Classification and analysis of partially balanced incomplete block design with two association classes. J. Amer. Statist. Assoc. 47 (1952), 151–184. | DOI | MR

[4] Bose, R.C., Shimamoto, T.: On linear associative algebras corresponding to association schemes of partially balanced designs. Ann. Math. Statist. 30 (1959), 21–36. | DOI | MR

[5] Cvetković, D.M., Doob, M., Sachs, H.: Spectra of graphs. Deutscher Verlag der Wissenchaften, Berlin, 1980. | MR

[6] Sachs, H.: Über selbstkomplement are Graphen. Publ. Math. Debrecen 9 (1962), 270–288. | MR

[7] Smith, J.H.: Some properties of the spectrum of a graph. Comb.Struct. and their Applications, Gordon and Breach, Sci. Publ. Inc., New York-London-Paris, 1970, pp. 403–406. | MR | Zbl

[8] Vetchý, V.: Metrically regular square of metrically regular bigraphs I. Arch. Math. (Brno) 27b (1991), 183–197. | MR

[9] Vetchý, V.: Metrically regular square of metrically regular bigraphs II. Arch. Math. (Brno) 28 (1992), 17–24. | MR

[10] Vetchý, V.: Metrically regular square of metrically regular bipartite graphs of diameter $D=6$. Arch. Math. (Brno) 29 (1993), 29–38. | MR

Cité par Sources :