Two-spinor tetrad and Lie derivatives of Einstein-Cartan-Dirac fields
Archivum mathematicum, Tome 54 (2018) no. 4, pp. 205-226.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

An integrated approach to Lie derivatives of spinors, spinor connections and the gravitational field is presented, in the context of a previously proposed, partly original formulation of a theory of Einstein-Cartan-Maxwell-Dirac fields based on “minimal geometric data”: the needed underlying structure is determined, via geometric constructions, from the unique assumption of a complex vector bundle $SM$ with 2-dimensional fibers, called a $2$-spinor bundle. Any further considered object is assumed to be a dynamical field; these include the gravitational field, which is jointly represented by a soldering form (the tetrad) relating the tangent space $M$ to the $2$-spinor bundle, and a connection of the latter (spinor connection). The Lie derivatives of objects of all considered types, with respect to a vector field ${\scriptstyle X}\colon M\rightarrow M$, turn out to be well-defined without making any special assumption about ${\scriptstyle X}$, and fulfill natural mutual relations.
DOI : 10.5817/AM2018-4-205
Classification : 53B05, 58A32, 83C60
Keywords: Lie derivatives of spinors; Lie derivatives of spinor connections; deformed tetrad gravity
@article{10_5817_AM2018_4_205,
     author = {Canarutto, Daniel},
     title = {Two-spinor tetrad and {Lie} derivatives of {Einstein-Cartan-Dirac} fields},
     journal = {Archivum mathematicum},
     pages = {205--226},
     publisher = {mathdoc},
     volume = {54},
     number = {4},
     year = {2018},
     doi = {10.5817/AM2018-4-205},
     mrnumber = {3887361},
     zbl = {06997351},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2018-4-205/}
}
TY  - JOUR
AU  - Canarutto, Daniel
TI  - Two-spinor tetrad and Lie derivatives of Einstein-Cartan-Dirac fields
JO  - Archivum mathematicum
PY  - 2018
SP  - 205
EP  - 226
VL  - 54
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2018-4-205/
DO  - 10.5817/AM2018-4-205
LA  - en
ID  - 10_5817_AM2018_4_205
ER  - 
%0 Journal Article
%A Canarutto, Daniel
%T Two-spinor tetrad and Lie derivatives of Einstein-Cartan-Dirac fields
%J Archivum mathematicum
%D 2018
%P 205-226
%V 54
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2018-4-205/
%R 10.5817/AM2018-4-205
%G en
%F 10_5817_AM2018_4_205
Canarutto, Daniel. Two-spinor tetrad and Lie derivatives of Einstein-Cartan-Dirac fields. Archivum mathematicum, Tome 54 (2018) no. 4, pp. 205-226. doi : 10.5817/AM2018-4-205. http://geodesic.mathdoc.fr/articles/10.5817/AM2018-4-205/

Cité par Sources :