Keywords: Lie derivatives of spinors; Lie derivatives of spinor connections; deformed tetrad gravity
@article{10_5817_AM2018_4_205,
author = {Canarutto, Daniel},
title = {Two-spinor tetrad and {Lie} derivatives of {Einstein-Cartan-Dirac} fields},
journal = {Archivum mathematicum},
pages = {205--226},
year = {2018},
volume = {54},
number = {4},
doi = {10.5817/AM2018-4-205},
mrnumber = {3887361},
zbl = {06997351},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2018-4-205/}
}
TY - JOUR AU - Canarutto, Daniel TI - Two-spinor tetrad and Lie derivatives of Einstein-Cartan-Dirac fields JO - Archivum mathematicum PY - 2018 SP - 205 EP - 226 VL - 54 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2018-4-205/ DO - 10.5817/AM2018-4-205 LA - en ID - 10_5817_AM2018_4_205 ER -
Canarutto, Daniel. Two-spinor tetrad and Lie derivatives of Einstein-Cartan-Dirac fields. Archivum mathematicum, Tome 54 (2018) no. 4, pp. 205-226. doi: 10.5817/AM2018-4-205
[1] Antipin, O., Mojaza, M., Sannino, F.: Conformal extensions of the standard model with Veltman conditions. Phys. Rev. D 89 (8) (2014), 085015 arXiv:1310.0957v3. Published 7 April 2014. | DOI
[2] Canarutto, D.: Possibly degenerate tetrad gravity and Maxwell-Dirac fields. J. Math. Phys. 39 (9) (1998), 4814–4823. | DOI | MR
[3] Canarutto, D.: Two-spinors, field theories and geometric optics in curved spacetime. Acta Appl. Math. 62 (2) (2000), 187–224. | DOI | MR
[4] Canarutto, D.: Minimal geometric data’ approach to Dirac algebra, spinor groups and field theories. Int. J. Geom. Methods Mod. Phys. 4 (6) (2007), 1005–1040, arXiv:math-ph/0703003. | DOI | MR
[5] Canarutto, D.: Fermi transport of spinors and free QED states in curved spacetime. Int. J. Geom. Methods Mod. Phys. 6 (5) (2009), 805–824, arXiv:0812.0651v1 [math-ph]. | DOI | MR
[6] Canarutto, D.: Tetrad gravity, electroweak geometry and conformal symmetry. Int. J. Geom. Methods Mod. Phys. 8 (4) (2011), 797–819, arXiv:1009.2255v1 [math-ph]. | DOI | MR
[7] Canarutto, D.: Positive spaces, generalized semi-densities and quantum interactions. J. Math. Phys. 53 (3) (2012), (24 pages). | DOI | MR
[8] Canarutto, D.: Two-spinor geometry and gauge freedom. Int. J. Geom. Methods Mod. Phys. 11 (2014), DOI: , arXiv:1404.5054 [math-ph]. | DOI | MR
[9] Canarutto, D.: Natural extensions of electroweak geometry and Higgs interactions. Ann. Henri Poincaré 16 (11) (2015), 2695–2711. | DOI | MR
[10] Canarutto, D.: Overconnections and the energy-tensors of gauge and gravitational fields. J. Geom. Phys. 106 (2016), 192–204, arXiv:1512.02584 [math-ph]. | DOI | MR
[11] Cartan, É.: Sur une généralisation de la notion de courbure de Riemann et les espaces á torsion. C. R. Acad. Sci. Paris 174 (1922), 593–595.
[12] Cartan, É.: Sur les variétés á connexion affine et la théorie de la relativité généralisée, Part I. rt I, Ann. Sci. École Norm. Sup. 40 (1923), 325–412, and ibid. 41 (1924), 1–25; Part II: ibid. 42 (1925), 17–88. | DOI | MR
[13] Corianò, C., Rose, L. Delle, Quintavalle, A., Serino, M.: Dilaton interactions and the anomalous breaking of scale invariance of the standard model. J. High Energy Phys. 77 (2013), 42 pages. | MR
[14] Faddeev, L.D.: An alternative interpretation of the Weinberg-Salam model. Progress in High Energy Physics and Nuclear Safety (Begun, V., Jenkovszky, L., Polański, A., eds.), NATO Science for Peace and Security Series B: Physics and Biophysics, Springer, 2009, arXiv:hep-th/0811.3311v2.
[15] Fatibene, L., Ferraris, M., Francaviglia, M., Godina, M.: A geometric definition of Lie derivative for spinor fields. Proceedings of the conference “Differential Geometry and Applications”, Masaryk University, Brno, 1996, pp. 549–557. | MR
[16] Ferraris, M., Kijowski, J.: Unified Geometric Theory of Electromagnetic and Gravitational Interactions. Gen. Relativity Gravitation 14 (1) (1982), 37–47. | DOI | MR
[17] Foot, R., Kobakhidze, A., McDonald, K.L.: Dilaton as the Higgs boson. Eur. Phys. J. C 68 (2010), 421–424, arXiv:0812.1604v2. | DOI
[18] Frölicher, A., Nijenhuis, A.: Theory of vector valued differential forms, I. Indag. Math. 18 (1956). | MR
[19] Godina, M., Matteucci, P.: The Lie derivative of spinor fields: theory and applications. Int. J. Geom. Methods Mod. Phys. 2 (2005), 159–188. | DOI | MR
[20] Hawking, S.W., Ellis, G.F.R.: The large scale structure of space-time. Cambridge Univ. Press, Cambridge, 1973. | MR
[21] Hehl, F.W., McCrea, J.D., Mielke, E.W., Ne’eman, Y.: Metric-affine gauge theory of gravity: field equations, Noether identities, world spinors, and breaking of dilaton invariance. Phys. Rep 258 (1995), 1–171. | DOI | MR
[22] Hehl, F.W., von der Heyde, P., Kerlick, G.D., Nester, J.M.: General relativity with spin and torsion: Foundations and prospects. 48 (3) (1976), 393–416. | MR
[23] Hehl, W.: Spin and torsion in General Relativity: I. Foundations. Gen. Relativity Gravitation 4 (1973), 333–349. | DOI | MR
[24] Hehl, W.: Spin and torsion in General Relativity: II. Geometry and field equations. Gen. Relativity Gravitation 5 (1974). | DOI | MR
[25] Helfer, A.D.: Spinor Lie derivatives and Fermion stress-energies. Proc. R. Soc. A (to appear); arXiv:1602.00632 [hep-th]. | MR
[26] Henneaux, M.: On geometrodynamics with tetrad fields. Gen. Relativity Gravitation 9 (11) (1978), 1031–1045. | DOI | MR
[27] Ilderton, A., Lavelle, M., McMullan, D.: Symmetry breaking, conformal geometry and gauge invariance. J. Phys. A 43 (31) (2010), arXiv:1002.1170 [hep-th]. | DOI | MR
[28] Janyška, J., Modugno, M.: Covariant Schrödinger operator. J. Phys. A 35 (2002). | DOI | MR
[29] Janyška, J., Modugno, M.: Hermitian vector fields and special phase functions. Int. J. Geom. Methods Mod. Phys. 3 (4) (2006), 1–36, arXiv:math-ph/0507070v1. | DOI | MR
[30] Janyška, J., Modugno, M., Vitolo, R.: An algebraic approach to physical scales. Acta Appl. Math. 110 (3) (2010), 1249–1276, arXiv:0710.1313v1. | DOI | MR | Zbl
[31] Kijowski, J.: A simple derivation of canonical structure and quasi-local Hamiltonians in general relativity. Gen. Relativity Gravitation 29 (1997), 307–343. | DOI | MR
[32] Kosmann, V.: Dérivées de Lie des spineurs. Ann. Mat. Pura Appl. 91 (1971), 317–395. | DOI | MR
[33] Landau, L., Lifchitz, E.: Théorie du champ. Mir, Moscou, 1968. | MR
[34] Lavelle, M., McMullan, D.: Observables and Gauge Fixing in Spontaneously Broken Gauge Theories. Phys. Lett. B 347 (1995), 89–94, arXiv:9412145v1. | DOI
[35] Leão, R.F., Rodrigues, Jr., W.A., Wainer, S.A.: Concept of Lie Derivative of Spinor Fields. A Geometric Motivated Approach. Adv. Appl. Clifford Algebras (2015), arXiv:1411.7845 [math-ph]. | MR
[36] Mangiarotti, L., Modugno, M.: Fibered spaces, jet spaces and connections for field theory. Proc. Int. Meeting on Geom. and Phys., Pitagora Ed., Bologna, 1983, pp. 135–165. | MR
[37] Michor, P.W.: Frölicher-Nijenhuis bracket. Encyclopaedia of Mathematics (Hazewinkel, M., ed.), Springer, 2001.
[38] Modugno, M., Saller, D., Tolksdorf, J.: Classification of infinitesimal symmetries in covariant classical mechanics. J. Math. Phys. 47 (2006), 062903. | DOI | MR
[39] Novello, M., Bittencourt, E.: What is the origin of the mass of the Higgs boson?. Phys. Rev. D (2012), 063510, arXiv:1209.4871v1. | DOI
[40] Ohanian, H.C.: Weyl gauge-vector and complex dilaton scalar for conformal symmetry and its breakin. Gen. Relativity Gravitation 48 (3) (2016), arXiv:1502.00020 [gr-qc]. | DOI | MR
[41] Padmanabhan, T.: General relativity from a thermodynamic perspective. Gen. Relativity Gravitation 46 (2014). | DOI | MR
[42] Penrose, R., Rindler, W.: Spinors and space-time. I: Two-spinor calculus and relativistic fields. Cambridge University Press, Cambridge, 1984. | MR
[43] Penrose, R., Rindler, W.: Spinors and space-time. II: Spinor and twistor methods in space-time geometry. Cambridge University Press, Cambridge, 1988. | MR
[44] Pervushinand, V.N., Arbuzov, A.B., Barbashov, B.M., Nazmitdinov, R.G., Borowiec, A., Pichugin, K.N., Zakharov, A.F.: Conformal and affine Hamiltonian dynamics of general relativity. Gen. Relativity Gravitation 44 (11) (2012), 2745–2783. | DOI | MR
[45] Pons, J.M.: Noether symmetries, energy-momentum tensors and conformal invariance in classical field theory. J. Math. Phys. 52 (2011), 012904, | DOI | MR
[46] Popławsky, N.J.: Geometrization of electromagnetism in tetrad-spin-connection gravity. Modern Phys. Lett. A 24 (6) (2009), 431–442. DOI: | DOI | MR
[47] Ryskin, M.G., Shuvaev, A.G.: Higgs boson as a dilaton. Phys. Atomic Nuclei 73 (2010), 965–970, arXiv:0909.3374v1. | DOI
[48] Saller, D., Vitolo, R.: Symmetries in covariant classical mechanics. J. Math. Phys. 41 (10) (2000), 6824–6842. | DOI | MR
[49] Sciama, D.W.: On a non-symmetric theory of the pure gravitational field. Math. Proc. Cambridge Philos. Soc. 54 (1) (1958), 72–80. | DOI | MR
[50] Trautman, A.: Einstein-Cartan theory. Encyclopedia of Mathematical Physics (Françoise, J.-P., Naber, G.L., Tsou, S.T., eds.), vol. 2, Elsevier, Oxford, 2006, pp. 189–195. | MR
[51] Vitolo, R.: Quantum structures in Galilei general relativity. Ann. Inst. H. Poincaré Phys. Théor. 70 (1999), 239–257. | MR
[52] Vitolo, R: Quantum structures in Einstein general relativity. Lett. Math. Phys. 51 (2000), 119–133. | DOI | MR | Zbl
[53] Yano, : Lie Derivatives and its Applications. North-Holland, Amsterdam, 1955.
Cité par Sources :