Two-spinor tetrad and Lie derivatives of Einstein-Cartan-Dirac fields
Archivum mathematicum, Tome 54 (2018) no. 4, pp. 205-226
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

An integrated approach to Lie derivatives of spinors, spinor connections and the gravitational field is presented, in the context of a previously proposed, partly original formulation of a theory of Einstein-Cartan-Maxwell-Dirac fields based on “minimal geometric data”: the needed underlying structure is determined, via geometric constructions, from the unique assumption of a complex vector bundle $SM$ with 2-dimensional fibers, called a $2$-spinor bundle. Any further considered object is assumed to be a dynamical field; these include the gravitational field, which is jointly represented by a soldering form (the tetrad) relating the tangent space $M$ to the $2$-spinor bundle, and a connection of the latter (spinor connection). The Lie derivatives of objects of all considered types, with respect to a vector field ${\scriptstyle X}\colon M\rightarrow M$, turn out to be well-defined without making any special assumption about ${\scriptstyle X}$, and fulfill natural mutual relations.
An integrated approach to Lie derivatives of spinors, spinor connections and the gravitational field is presented, in the context of a previously proposed, partly original formulation of a theory of Einstein-Cartan-Maxwell-Dirac fields based on “minimal geometric data”: the needed underlying structure is determined, via geometric constructions, from the unique assumption of a complex vector bundle $SM$ with 2-dimensional fibers, called a $2$-spinor bundle. Any further considered object is assumed to be a dynamical field; these include the gravitational field, which is jointly represented by a soldering form (the tetrad) relating the tangent space $M$ to the $2$-spinor bundle, and a connection of the latter (spinor connection). The Lie derivatives of objects of all considered types, with respect to a vector field ${\scriptstyle X}\colon M\rightarrow M$, turn out to be well-defined without making any special assumption about ${\scriptstyle X}$, and fulfill natural mutual relations.
DOI : 10.5817/AM2018-4-205
Classification : 53B05, 58A32, 83C60
Keywords: Lie derivatives of spinors; Lie derivatives of spinor connections; deformed tetrad gravity
@article{10_5817_AM2018_4_205,
     author = {Canarutto, Daniel},
     title = {Two-spinor tetrad and {Lie} derivatives of {Einstein-Cartan-Dirac} fields},
     journal = {Archivum mathematicum},
     pages = {205--226},
     year = {2018},
     volume = {54},
     number = {4},
     doi = {10.5817/AM2018-4-205},
     mrnumber = {3887361},
     zbl = {06997351},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2018-4-205/}
}
TY  - JOUR
AU  - Canarutto, Daniel
TI  - Two-spinor tetrad and Lie derivatives of Einstein-Cartan-Dirac fields
JO  - Archivum mathematicum
PY  - 2018
SP  - 205
EP  - 226
VL  - 54
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2018-4-205/
DO  - 10.5817/AM2018-4-205
LA  - en
ID  - 10_5817_AM2018_4_205
ER  - 
%0 Journal Article
%A Canarutto, Daniel
%T Two-spinor tetrad and Lie derivatives of Einstein-Cartan-Dirac fields
%J Archivum mathematicum
%D 2018
%P 205-226
%V 54
%N 4
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2018-4-205/
%R 10.5817/AM2018-4-205
%G en
%F 10_5817_AM2018_4_205
Canarutto, Daniel. Two-spinor tetrad and Lie derivatives of Einstein-Cartan-Dirac fields. Archivum mathematicum, Tome 54 (2018) no. 4, pp. 205-226. doi: 10.5817/AM2018-4-205

[1] Antipin, O., Mojaza, M., Sannino, F.: Conformal extensions of the standard model with Veltman conditions. Phys. Rev. D 89 (8) (2014), 085015 arXiv:1310.0957v3. Published 7 April 2014. | DOI

[2] Canarutto, D.: Possibly degenerate tetrad gravity and Maxwell-Dirac fields. J. Math. Phys. 39 (9) (1998), 4814–4823. | DOI | MR

[3] Canarutto, D.: Two-spinors, field theories and geometric optics in curved spacetime. Acta Appl. Math. 62 (2) (2000), 187–224. | DOI | MR

[4] Canarutto, D.: Minimal geometric data’ approach to Dirac algebra, spinor groups and field theories. Int. J. Geom. Methods Mod. Phys. 4 (6) (2007), 1005–1040, arXiv:math-ph/0703003. | DOI | MR

[5] Canarutto, D.: Fermi transport of spinors and free QED states in curved spacetime. Int. J. Geom. Methods Mod. Phys. 6 (5) (2009), 805–824, arXiv:0812.0651v1 [math-ph]. | DOI | MR

[6] Canarutto, D.: Tetrad gravity, electroweak geometry and conformal symmetry. Int. J. Geom. Methods Mod. Phys. 8 (4) (2011), 797–819, arXiv:1009.2255v1 [math-ph]. | DOI | MR

[7] Canarutto, D.: Positive spaces, generalized semi-densities and quantum interactions. J. Math. Phys. 53 (3) (2012), (24 pages). | DOI | MR

[8] Canarutto, D.: Two-spinor geometry and gauge freedom. Int. J. Geom. Methods Mod. Phys. 11 (2014), DOI: , arXiv:1404.5054 [math-ph]. | DOI | MR

[9] Canarutto, D.: Natural extensions of electroweak geometry and Higgs interactions. Ann. Henri Poincaré 16 (11) (2015), 2695–2711. | DOI | MR

[10] Canarutto, D.: Overconnections and the energy-tensors of gauge and gravitational fields. J. Geom. Phys. 106 (2016), 192–204, arXiv:1512.02584 [math-ph]. | DOI | MR

[11] Cartan, É.: Sur une généralisation de la notion de courbure de Riemann et les espaces á torsion. C. R. Acad. Sci. Paris 174 (1922), 593–595.

[12] Cartan, É.: Sur les variétés á connexion affine et la théorie de la relativité généralisée, Part I. rt I, Ann. Sci. École Norm. Sup. 40 (1923), 325–412, and ibid. 41 (1924), 1–25; Part II: ibid. 42 (1925), 17–88. | DOI | MR

[13] Corianò, C., Rose, L. Delle, Quintavalle, A., Serino, M.: Dilaton interactions and the anomalous breaking of scale invariance of the standard model. J. High Energy Phys. 77 (2013), 42 pages. | MR

[14] Faddeev, L.D.: An alternative interpretation of the Weinberg-Salam model. Progress in High Energy Physics and Nuclear Safety (Begun, V., Jenkovszky, L., Polański, A., eds.), NATO Science for Peace and Security Series B: Physics and Biophysics, Springer, 2009, arXiv:hep-th/0811.3311v2.

[15] Fatibene, L., Ferraris, M., Francaviglia, M., Godina, M.: A geometric definition of Lie derivative for spinor fields. Proceedings of the conference “Differential Geometry and Applications”, Masaryk University, Brno, 1996, pp. 549–557. | MR

[16] Ferraris, M., Kijowski, J.: Unified Geometric Theory of Electromagnetic and Gravitational Interactions. Gen. Relativity Gravitation 14 (1) (1982), 37–47. | DOI | MR

[17] Foot, R., Kobakhidze, A., McDonald, K.L.: Dilaton as the Higgs boson. Eur. Phys. J. C 68 (2010), 421–424, arXiv:0812.1604v2. | DOI

[18] Frölicher, A., Nijenhuis, A.: Theory of vector valued differential forms, I. Indag. Math. 18 (1956). | MR

[19] Godina, M., Matteucci, P.: The Lie derivative of spinor fields: theory and applications. Int. J. Geom. Methods Mod. Phys. 2 (2005), 159–188. | DOI | MR

[20] Hawking, S.W., Ellis, G.F.R.: The large scale structure of space-time. Cambridge Univ. Press, Cambridge, 1973. | MR

[21] Hehl, F.W., McCrea, J.D., Mielke, E.W., Ne’eman, Y.: Metric-affine gauge theory of gravity: field equations, Noether identities, world spinors, and breaking of dilaton invariance. Phys. Rep 258 (1995), 1–171. | DOI | MR

[22] Hehl, F.W., von der Heyde, P., Kerlick, G.D., Nester, J.M.: General relativity with spin and torsion: Foundations and prospects. 48 (3) (1976), 393–416. | MR

[23] Hehl, W.: Spin and torsion in General Relativity: I. Foundations. Gen. Relativity Gravitation 4 (1973), 333–349. | DOI | MR

[24] Hehl, W.: Spin and torsion in General Relativity: II. Geometry and field equations. Gen. Relativity Gravitation 5 (1974). | DOI | MR

[25] Helfer, A.D.: Spinor Lie derivatives and Fermion stress-energies. Proc. R. Soc. A (to appear); arXiv:1602.00632 [hep-th]. | MR

[26] Henneaux, M.: On geometrodynamics with tetrad fields. Gen. Relativity Gravitation 9 (11) (1978), 1031–1045. | DOI | MR

[27] Ilderton, A., Lavelle, M., McMullan, D.: Symmetry breaking, conformal geometry and gauge invariance. J. Phys. A 43 (31) (2010), arXiv:1002.1170 [hep-th]. | DOI | MR

[28] Janyška, J., Modugno, M.: Covariant Schrödinger operator. J. Phys. A 35 (2002). | DOI | MR

[29] Janyška, J., Modugno, M.: Hermitian vector fields and special phase functions. Int. J. Geom. Methods Mod. Phys. 3 (4) (2006), 1–36, arXiv:math-ph/0507070v1. | DOI | MR

[30] Janyška, J., Modugno, M., Vitolo, R.: An algebraic approach to physical scales. Acta Appl. Math. 110 (3) (2010), 1249–1276, arXiv:0710.1313v1. | DOI | MR | Zbl

[31] Kijowski, J.: A simple derivation of canonical structure and quasi-local Hamiltonians in general relativity. Gen. Relativity Gravitation 29 (1997), 307–343. | DOI | MR

[32] Kosmann, V.: Dérivées de Lie des spineurs. Ann. Mat. Pura Appl. 91 (1971), 317–395. | DOI | MR

[33] Landau, L., Lifchitz, E.: Théorie du champ. Mir, Moscou, 1968. | MR

[34] Lavelle, M., McMullan, D.: Observables and Gauge Fixing in Spontaneously Broken Gauge Theories. Phys. Lett. B 347 (1995), 89–94, arXiv:9412145v1. | DOI

[35] Leão, R.F., Rodrigues, Jr., W.A., Wainer, S.A.: Concept of Lie Derivative of Spinor Fields. A Geometric Motivated Approach. Adv. Appl. Clifford Algebras (2015), arXiv:1411.7845 [math-ph]. | MR

[36] Mangiarotti, L., Modugno, M.: Fibered spaces, jet spaces and connections for field theory. Proc. Int. Meeting on Geom. and Phys., Pitagora Ed., Bologna, 1983, pp. 135–165. | MR

[37] Michor, P.W.: Frölicher-Nijenhuis bracket. Encyclopaedia of Mathematics (Hazewinkel, M., ed.), Springer, 2001.

[38] Modugno, M., Saller, D., Tolksdorf, J.: Classification of infinitesimal symmetries in covariant classical mechanics. J. Math. Phys. 47 (2006), 062903. | DOI | MR

[39] Novello, M., Bittencourt, E.: What is the origin of the mass of the Higgs boson?. Phys. Rev. D (2012), 063510, arXiv:1209.4871v1. | DOI

[40] Ohanian, H.C.: Weyl gauge-vector and complex dilaton scalar for conformal symmetry and its breakin. Gen. Relativity Gravitation 48 (3) (2016), arXiv:1502.00020 [gr-qc]. | DOI | MR

[41] Padmanabhan, T.: General relativity from a thermodynamic perspective. Gen. Relativity Gravitation 46 (2014). | DOI | MR

[42] Penrose, R., Rindler, W.: Spinors and space-time. I: Two-spinor calculus and relativistic fields. Cambridge University Press, Cambridge, 1984. | MR

[43] Penrose, R., Rindler, W.: Spinors and space-time. II: Spinor and twistor methods in space-time geometry. Cambridge University Press, Cambridge, 1988. | MR

[44] Pervushinand, V.N., Arbuzov, A.B., Barbashov, B.M., Nazmitdinov, R.G., Borowiec, A., Pichugin, K.N., Zakharov, A.F.: Conformal and affine Hamiltonian dynamics of general relativity. Gen. Relativity Gravitation 44 (11) (2012), 2745–2783. | DOI | MR

[45] Pons, J.M.: Noether symmetries, energy-momentum tensors and conformal invariance in classical field theory. J. Math. Phys. 52 (2011), 012904, | DOI | MR

[46] Popławsky, N.J.: Geometrization of electromagnetism in tetrad-spin-connection gravity. Modern Phys. Lett. A 24 (6) (2009), 431–442. DOI:  | DOI | MR

[47] Ryskin, M.G., Shuvaev, A.G.: Higgs boson as a dilaton. Phys. Atomic Nuclei 73 (2010), 965–970, arXiv:0909.3374v1. | DOI

[48] Saller, D., Vitolo, R.: Symmetries in covariant classical mechanics. J. Math. Phys. 41 (10) (2000), 6824–6842. | DOI | MR

[49] Sciama, D.W.: On a non-symmetric theory of the pure gravitational field. Math. Proc. Cambridge Philos. Soc. 54 (1) (1958), 72–80. | DOI | MR

[50] Trautman, A.: Einstein-Cartan theory. Encyclopedia of Mathematical Physics (Françoise, J.-P., Naber, G.L., Tsou, S.T., eds.), vol. 2, Elsevier, Oxford, 2006, pp. 189–195. | MR

[51] Vitolo, R.: Quantum structures in Galilei general relativity. Ann. Inst. H. Poincaré Phys. Théor. 70 (1999), 239–257. | MR

[52] Vitolo, R: Quantum structures in Einstein general relativity. Lett. Math. Phys. 51 (2000), 119–133. | DOI | MR | Zbl

[53] Yano, : Lie Derivatives and its Applications. North-Holland, Amsterdam, 1955.

Cité par Sources :