Keywords: Riccati equation; oscillation; non oscillation; prepared (preferred) solution; Liouville’s formula
@article{10_5817_AM2018_4_189,
author = {Grigorian, Gevorg Avagovich},
title = {Oscillatory and non oscillatory criteria for the systems of two linear first order two by two dimensional matrix ordinary differential equations},
journal = {Archivum mathematicum},
pages = {189--203},
year = {2018},
volume = {54},
number = {4},
doi = {10.5817/AM2018-4-189},
mrnumber = {3887360},
zbl = {06997350},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2018-4-189/}
}
TY - JOUR AU - Grigorian, Gevorg Avagovich TI - Oscillatory and non oscillatory criteria for the systems of two linear first order two by two dimensional matrix ordinary differential equations JO - Archivum mathematicum PY - 2018 SP - 189 EP - 203 VL - 54 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2018-4-189/ DO - 10.5817/AM2018-4-189 LA - en ID - 10_5817_AM2018_4_189 ER -
%0 Journal Article %A Grigorian, Gevorg Avagovich %T Oscillatory and non oscillatory criteria for the systems of two linear first order two by two dimensional matrix ordinary differential equations %J Archivum mathematicum %D 2018 %P 189-203 %V 54 %N 4 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2018-4-189/ %R 10.5817/AM2018-4-189 %G en %F 10_5817_AM2018_4_189
Grigorian, Gevorg Avagovich. Oscillatory and non oscillatory criteria for the systems of two linear first order two by two dimensional matrix ordinary differential equations. Archivum mathematicum, Tome 54 (2018) no. 4, pp. 189-203. doi: 10.5817/AM2018-4-189
[1] Butler, G.J., Erbe, L.H., Mingarelli, A.B.: Riccati techniques and variational principles in oscillation theory for linear systems. Trans. Amer. Math. Soc. 303 (1) (1987), 263–282. | DOI | MR
[2] Byers, R., Harris, B.J., Kwong, M.K.: Weighted means and oscillation conditions for second order matrix differential equations. J. Differential Equations 61 (1986), 164–177. | DOI | MR
[3] Erbe, L.H., Kong, Q., Ruan, Sh.: Kamenev type theorems for second order matrix differential systems. Proc. Amer. Math. Soc. 117 (4) (1993), 957–962. | MR
[4] Grigorian, G.A.: On two comparison tests for second-order linear ordinary differential equations. Differ. Uravn. 47 (2011), 1225–1240, translation in Differential Equations 47 (2011), no. 9 1237–1252. | DOI | MR
[5] Grigorian, G.A.: Two comparison criteria for scalar Riccati equations with applications. Russian Math. (Iz. VUZ) 56 (11) (2012), 17–30. | DOI | MR
[6] Grigorian, G.A.: Global solvability of scalar Riccati equations. Izv. Vyssh. Uchebn. Zaved. Mat. 3 (2015), 35–48. | MR
[7] Grigorian, G.A.: On the stability of systems of two first-order linear ordinary differential equations. Differ. Uravn. 51 (3) (2015), 283–292. | DOI | MR
[8] Grigorian, G.A.: On one oscillatory criterion for the second order linear ordinary differential equations. Opuscula Math. 36 (5) (2016), 589–601, | DOI | MR
[9] Hartman, P.: Ordinary differential equations. Classics Appl. Math., SIAM 38 (2002). | MR | Zbl
[10] Li, L., Meng, F., Zhung, Z.: Oscillation results related to integral averaging technique for linear hamiltonian system. Dynam. Systems Appl. 18 (2009), 725–736. | MR
[11] Meng, F., Mingarelli, A.B.: Oscillation of linear hamiltonian systems. Proc. Amer. Math. Soc. 131 (3) (2002), 897–904. | DOI | MR
[12] Mingarelli, A.B.: On a conjecture for oscillation of second order ordinary differential systems. Proc. Amer. Math. Soc. 82 (4), 593–598. | MR
[13] Wang, Q.: Oscillation criteria for second order matrix differential systems. Arch. Math. (Basel) 76 (2001), 385–390. | DOI | MR
[14] Zhung, Z., Zhu, S.: Hartman type oscillation criteria for linear matrix hamiltonian systems. Dynam. Systems Appl. 17 (2008), 85–96. | MR
Cité par Sources :