On the Diophantine equation $\sum _{j=1}^kjF_j^p=F_n^q$
Archivum mathematicum, Tome 54 (2018) no. 3, pp. 177-188
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $F_n$ denote the $n^{th}$ term of the Fibonacci sequence. In this paper, we investigate the Diophantine equation $F_1^p+2F_2^p+\cdots +kF_{k}^p=F_{n}^q$ in the positive integers $k$ and $n$, where $p$ and $q$ are given positive integers. A complete solution is given if the exponents are included in the set $\lbrace 1,2\rbrace $. Based on the specific cases we could solve, and a computer search with $p,q,k\le 100$ we conjecture that beside the trivial solutions only $F_8=F_1+2F_2+3F_3+4F_4$, $F_4^2=F_1+2F_2+3F_3$, and $F_4^3=F_1^3+2F_2^3+3F_3^3$ satisfy the title equation.
DOI :
10.5817/AM2018-3-177
Classification :
11B39, 11D45
Keywords: Fibonacci sequence; Diophantine equation
Keywords: Fibonacci sequence; Diophantine equation
@article{10_5817_AM2018_3_177,
author = {Soydan, G\"okhan and N\'emeth, L\'aszl\'o and Szalay, L\'aszl\'o},
title = {On the {Diophantine} equation $\sum _{j=1}^kjF_j^p=F_n^q$},
journal = {Archivum mathematicum},
pages = {177--188},
publisher = {mathdoc},
volume = {54},
number = {3},
year = {2018},
doi = {10.5817/AM2018-3-177},
mrnumber = {3847324},
zbl = {06940797},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2018-3-177/}
}
TY - JOUR
AU - Soydan, Gökhan
AU - Németh, László
AU - Szalay, László
TI - On the Diophantine equation $\sum _{j=1}^kjF_j^p=F_n^q$
JO - Archivum mathematicum
PY - 2018
SP - 177
EP - 188
VL - 54
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2018-3-177/
DO - 10.5817/AM2018-3-177
LA - en
ID - 10_5817_AM2018_3_177
ER -
%0 Journal Article
%A Soydan, Gökhan
%A Németh, László
%A Szalay, László
%T On the Diophantine equation $\sum _{j=1}^kjF_j^p=F_n^q$
%J Archivum mathematicum
%D 2018
%P 177-188
%V 54
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2018-3-177/
%R 10.5817/AM2018-3-177
%G en
%F 10_5817_AM2018_3_177
Soydan, Gökhan; Németh, László; Szalay, László. On the Diophantine equation $\sum _{j=1}^kjF_j^p=F_n^q$. Archivum mathematicum, Tome 54 (2018) no. 3, pp. 177-188. doi: 10.5817/AM2018-3-177
Cité par Sources :