On the Diophantine equation $\sum _{j=1}^kjF_j^p=F_n^q$
Archivum mathematicum, Tome 54 (2018) no. 3, pp. 177-188 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $F_n$ denote the $n^{th}$ term of the Fibonacci sequence. In this paper, we investigate the Diophantine equation $F_1^p+2F_2^p+\cdots +kF_{k}^p=F_{n}^q$ in the positive integers $k$ and $n$, where $p$ and $q$ are given positive integers. A complete solution is given if the exponents are included in the set $\lbrace 1,2\rbrace $. Based on the specific cases we could solve, and a computer search with $p,q,k\le 100$ we conjecture that beside the trivial solutions only $F_8=F_1+2F_2+3F_3+4F_4$, $F_4^2=F_1+2F_2+3F_3$, and $F_4^3=F_1^3+2F_2^3+3F_3^3$ satisfy the title equation.
Let $F_n$ denote the $n^{th}$ term of the Fibonacci sequence. In this paper, we investigate the Diophantine equation $F_1^p+2F_2^p+\cdots +kF_{k}^p=F_{n}^q$ in the positive integers $k$ and $n$, where $p$ and $q$ are given positive integers. A complete solution is given if the exponents are included in the set $\lbrace 1,2\rbrace $. Based on the specific cases we could solve, and a computer search with $p,q,k\le 100$ we conjecture that beside the trivial solutions only $F_8=F_1+2F_2+3F_3+4F_4$, $F_4^2=F_1+2F_2+3F_3$, and $F_4^3=F_1^3+2F_2^3+3F_3^3$ satisfy the title equation.
DOI : 10.5817/AM2018-3-177
Classification : 11B39, 11D45
Keywords: Fibonacci sequence; Diophantine equation
@article{10_5817_AM2018_3_177,
     author = {Soydan, G\"okhan and N\'emeth, L\'aszl\'o and Szalay, L\'aszl\'o},
     title = {On the {Diophantine} equation $\sum _{j=1}^kjF_j^p=F_n^q$},
     journal = {Archivum mathematicum},
     pages = {177--188},
     year = {2018},
     volume = {54},
     number = {3},
     doi = {10.5817/AM2018-3-177},
     mrnumber = {3847324},
     zbl = {06940797},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2018-3-177/}
}
TY  - JOUR
AU  - Soydan, Gökhan
AU  - Németh, László
AU  - Szalay, László
TI  - On the Diophantine equation $\sum _{j=1}^kjF_j^p=F_n^q$
JO  - Archivum mathematicum
PY  - 2018
SP  - 177
EP  - 188
VL  - 54
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2018-3-177/
DO  - 10.5817/AM2018-3-177
LA  - en
ID  - 10_5817_AM2018_3_177
ER  - 
%0 Journal Article
%A Soydan, Gökhan
%A Németh, László
%A Szalay, László
%T On the Diophantine equation $\sum _{j=1}^kjF_j^p=F_n^q$
%J Archivum mathematicum
%D 2018
%P 177-188
%V 54
%N 3
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2018-3-177/
%R 10.5817/AM2018-3-177
%G en
%F 10_5817_AM2018_3_177
Soydan, Gökhan; Németh, László; Szalay, László. On the Diophantine equation $\sum _{j=1}^kjF_j^p=F_n^q$. Archivum mathematicum, Tome 54 (2018) no. 3, pp. 177-188. doi: 10.5817/AM2018-3-177

[1] Alvarado, S.D., Dujella, A., Luca, F.: On a conjecture regarding balancing with powers of Fibonacci numbers. Integers 12 (2012), 1127–1158. | DOI | MR

[2] Andreescu, T., Andrica, D.: Quadratic Diophantine Equations. 2015, 124–126. | MR

[3] Behera, A., Liptai, K., Panda, G.K., Szalay, L: Balancing with Fibonacci powers. Fibonacci Quart. 49 (2011), 28–33. | MR

[4] Chaves, A.P., Marques, D., Togbé, A.: On the sum of powers of terms of a linear recurrence sequence. Bull. Braz. Math. Soc. New Series 43 (2012), 397–406. | DOI | MR

[5] Koshy, T.: Fibonacci and Lucas Numbers with Applications. John Wiley and Sons, 2011. | MR

[6] Luca, F., Oyono, R.: An exponential Diophantine equation related to powers of two consecutive Fibonacci numbers. Proc. Japan Acad. Ser. A 87 (2011), 45–50. | MR

[7] Luca, F., Szalay, L.: Fibonacci diophantine triples. Glas. Mat. Ser. III 43 (63) (2008), 253–264. | DOI | MR

[8] Marques, D., Togbé, A.: On the sum of powers of two consecutive Fibonacci numbers. Proc. Japan Acad. Ser. A 86 (2010), 174–176. | MR

[9] Panda, G.K.: Sequence balancing and cobalancing numbers. Fibonacci Quart. 45 (2007), 265–271. | MR

[10] Pongsriiam, P.: Fibonacci and Lucas numbers associated with Brocard-Ramanujan equation. Commun. Korean Math. Soc. 91 (3) (2017), 511–522. | MR

[11] Pongsriiam, P.: Fibonacci and Lucas numbers which are one away from their products. Fibonacci Quart. 55 (2017), 29–40. | MR

[12] Soydan, G.: On the Diophantine equation $(x+1)^k+(x+2)^k+\dots +(lx)^k=y^n$. Publ. Math. Debrecen 91 (3–4) (2017), 369–382. | MR

[13] Vorob’ev, N.N.: Fibonacci Numbers. Blaisdell Pub. Co. New York, 1961.

[14] Wulczyn, G.: Problem E2158. Amer. Math. Monthly 76 (1969), 1144–1146. | DOI | MR

Cité par Sources :