Best proximity point for proximal Berinde nonexpansive mappings on starshaped sets
Archivum mathematicum, Tome 54 (2018) no. 3, pp. 165-176 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we introduce the new concept of proximal mapping, namely proximal weak contractions and proximal Berinde nonexpansive mappings. We prove the existence of best proximity points for proximal weak contractions in metric spaces, and for proximal Berinde nonexpansive mappings on starshape sets in Banach spaces. Examples supporting our main results are also given. Our main results extend and generalize some of well-known best proximity point theorems of proximal nonexpansive mappings in the literatures.
In this paper, we introduce the new concept of proximal mapping, namely proximal weak contractions and proximal Berinde nonexpansive mappings. We prove the existence of best proximity points for proximal weak contractions in metric spaces, and for proximal Berinde nonexpansive mappings on starshape sets in Banach spaces. Examples supporting our main results are also given. Our main results extend and generalize some of well-known best proximity point theorems of proximal nonexpansive mappings in the literatures.
DOI : 10.5817/AM2018-3-165
Classification : 47H09, 47H10
Keywords: best proximity point; proximal weak contraction mapping; proximal Berinde nonexpansive mapping; starshaped set
@article{10_5817_AM2018_3_165,
     author = {Bunlue, Nuttawut and Suantai, Suthep},
     title = {Best proximity point for proximal {Berinde} nonexpansive mappings on starshaped sets},
     journal = {Archivum mathematicum},
     pages = {165--176},
     year = {2018},
     volume = {54},
     number = {3},
     doi = {10.5817/AM2018-3-165},
     mrnumber = {3847323},
     zbl = {06940796},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2018-3-165/}
}
TY  - JOUR
AU  - Bunlue, Nuttawut
AU  - Suantai, Suthep
TI  - Best proximity point for proximal Berinde nonexpansive mappings on starshaped sets
JO  - Archivum mathematicum
PY  - 2018
SP  - 165
EP  - 176
VL  - 54
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2018-3-165/
DO  - 10.5817/AM2018-3-165
LA  - en
ID  - 10_5817_AM2018_3_165
ER  - 
%0 Journal Article
%A Bunlue, Nuttawut
%A Suantai, Suthep
%T Best proximity point for proximal Berinde nonexpansive mappings on starshaped sets
%J Archivum mathematicum
%D 2018
%P 165-176
%V 54
%N 3
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2018-3-165/
%R 10.5817/AM2018-3-165
%G en
%F 10_5817_AM2018_3_165
Bunlue, Nuttawut; Suantai, Suthep. Best proximity point for proximal Berinde nonexpansive mappings on starshaped sets. Archivum mathematicum, Tome 54 (2018) no. 3, pp. 165-176. doi: 10.5817/AM2018-3-165

[1] Basha, S.S.: Best proximity points: optimal solutions. J. Optim. Theory Appl. 151 (1) (2011), 210–216. | DOI | MR

[2] Basha, S.S., Veeramani, P.: Best proximity pair theorems for multifunctions with open fibres. J. Approx. Theory 103 (1) (2000), 119–129. | DOI | MR

[3] Berinde, V.: Approximating fixed points of weak contractions using the Picard iteration. Nonlinear Anal. Forum 9 (2004), 43–53. | MR

[4] Chen, J., Xiao, S., Wang, H., Deng, S.: Best proximity point for the proximal nonexpansive mapping on the starshaped sets. Fixed Point Theory and Applications 19 (2015). | MR

[5] Eldred, A.A., Veeramani, P.: Existence and convergence of best proximity points. J. Math. Anal. Appl. 323 (2) (2006), 1001–1006. | DOI | MR

[6] Fan, K.: A generalization of Tychoff’s fixed point theorem. Math. Ann. 142 (1961), 305–310. | DOI | MR

[7] Gabeleh, M.: Proximal weakly contractive and proximal nonexpansive non-self-mappings in metric and Banach spaces. J. Optim. Theory Appl. 158 (2) (2013), 615–625. | DOI | MR

[8] Gabeleh, M.: Global optimal solutions of non-self mappings. UPB Sci. Bull., Series A: App. Math. Phys. 75 (2014), 67–74. | MR

[9] Gabeleh, M.: Best proximity point theorems via proximal non-self mappings. J. Optim. Theory Appl. 164 (2015), 565–576. | DOI | MR

[10] Kim, W.K.: Existence of equilibrium pair in best proximity settings. Appl. Math. Sci. 9 (13) (2015), 629–636.

[11] Kim, W.K., Kum, S., Lee, K.H.: On general best proximity pairs and equilibrium pairs in free abstract economies. Nonlinear Anal. 68 (2008), 2216–2227. | MR

[12] Kim, W.K., Lee, K.H.: Existence of best proximity pairs and equilibrium pairs. J. Math. Anal. Appl. 316 (2006), 433–446. | DOI | MR

[13] Kirk, W.A., Reich, S., Veeramani, P.: Proximinal retracts and best proximity pair theorems. Numer. Funct. Anal. Optim. 24 (7–8) (2003), 851–862. | DOI | MR

[14] Kosuru, G.S.R., Veeramani, P.: A note on existence and convergence of best proximity points for pointwise cyclic contractions. Numer. Funct. Anal. Optim. 32 (7) (2011), 821–830. | DOI | MR

[15] Prolla, J.B.: Fixed-point theorems for set-valued mappings and existence of best approximants. Numer. Funct. Anal. Optim. 5 (4) (1983), 449–455. | DOI | MR

[16] Raj, V.S.: A best proximity point theorem for weakly contractive non-self mappings. Nonlinear Anal. TMA 74 (14) (2011), 4804–4808. | MR

[17] Reich, S.: Approximate selections, best approximations, fixed points, and invariant sets. J. Math. Anal. Appl. 62 (1) (1978), 104–113. | DOI | MR

[18] Sehgal, V.M., Singh, S.P.: A generalization to multifunctions of Fan’s best approximation theorem. Proc. Amer. Math. Soc. 102 (3) (1988), 534–537. | MR

[19] Sehgal, V.M., Singh, S.P.: A theorem on best approximations. Numer. Funct. Anal. Optim. 10 (1–2) (1989), 181–184. | DOI | MR

[20] Suzuki, T.: A generalized Banach contraction principle which characterizes metric completeness. Proc. Amer. Math. Soc. 136 (2008), 1861–1869. | DOI | MR

[21] Veeramani, P., Kirk, W.A., Eldred, A.A.: Proximal normal structure and relatively nonexpansive mappings. Stud. Math. 171 (3) (2005), 283–293. | DOI | MR

[22] Vetrivel, V., Veeramani, P., Bhattacharyya, P.: Some extensions of Fan’s best approximation theorem. Numer. Funct. Anal. Optim. 13 (3–4) (1992), 397–402. | DOI | MR

Cité par Sources :