Keywords: best proximity point; proximal weak contraction mapping; proximal Berinde nonexpansive mapping; starshaped set
@article{10_5817_AM2018_3_165,
author = {Bunlue, Nuttawut and Suantai, Suthep},
title = {Best proximity point for proximal {Berinde} nonexpansive mappings on starshaped sets},
journal = {Archivum mathematicum},
pages = {165--176},
year = {2018},
volume = {54},
number = {3},
doi = {10.5817/AM2018-3-165},
mrnumber = {3847323},
zbl = {06940796},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2018-3-165/}
}
TY - JOUR AU - Bunlue, Nuttawut AU - Suantai, Suthep TI - Best proximity point for proximal Berinde nonexpansive mappings on starshaped sets JO - Archivum mathematicum PY - 2018 SP - 165 EP - 176 VL - 54 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2018-3-165/ DO - 10.5817/AM2018-3-165 LA - en ID - 10_5817_AM2018_3_165 ER -
%0 Journal Article %A Bunlue, Nuttawut %A Suantai, Suthep %T Best proximity point for proximal Berinde nonexpansive mappings on starshaped sets %J Archivum mathematicum %D 2018 %P 165-176 %V 54 %N 3 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2018-3-165/ %R 10.5817/AM2018-3-165 %G en %F 10_5817_AM2018_3_165
Bunlue, Nuttawut; Suantai, Suthep. Best proximity point for proximal Berinde nonexpansive mappings on starshaped sets. Archivum mathematicum, Tome 54 (2018) no. 3, pp. 165-176. doi: 10.5817/AM2018-3-165
[1] Basha, S.S.: Best proximity points: optimal solutions. J. Optim. Theory Appl. 151 (1) (2011), 210–216. | DOI | MR
[2] Basha, S.S., Veeramani, P.: Best proximity pair theorems for multifunctions with open fibres. J. Approx. Theory 103 (1) (2000), 119–129. | DOI | MR
[3] Berinde, V.: Approximating fixed points of weak contractions using the Picard iteration. Nonlinear Anal. Forum 9 (2004), 43–53. | MR
[4] Chen, J., Xiao, S., Wang, H., Deng, S.: Best proximity point for the proximal nonexpansive mapping on the starshaped sets. Fixed Point Theory and Applications 19 (2015). | MR
[5] Eldred, A.A., Veeramani, P.: Existence and convergence of best proximity points. J. Math. Anal. Appl. 323 (2) (2006), 1001–1006. | DOI | MR
[6] Fan, K.: A generalization of Tychoff’s fixed point theorem. Math. Ann. 142 (1961), 305–310. | DOI | MR
[7] Gabeleh, M.: Proximal weakly contractive and proximal nonexpansive non-self-mappings in metric and Banach spaces. J. Optim. Theory Appl. 158 (2) (2013), 615–625. | DOI | MR
[8] Gabeleh, M.: Global optimal solutions of non-self mappings. UPB Sci. Bull., Series A: App. Math. Phys. 75 (2014), 67–74. | MR
[9] Gabeleh, M.: Best proximity point theorems via proximal non-self mappings. J. Optim. Theory Appl. 164 (2015), 565–576. | DOI | MR
[10] Kim, W.K.: Existence of equilibrium pair in best proximity settings. Appl. Math. Sci. 9 (13) (2015), 629–636.
[11] Kim, W.K., Kum, S., Lee, K.H.: On general best proximity pairs and equilibrium pairs in free abstract economies. Nonlinear Anal. 68 (2008), 2216–2227. | MR
[12] Kim, W.K., Lee, K.H.: Existence of best proximity pairs and equilibrium pairs. J. Math. Anal. Appl. 316 (2006), 433–446. | DOI | MR
[13] Kirk, W.A., Reich, S., Veeramani, P.: Proximinal retracts and best proximity pair theorems. Numer. Funct. Anal. Optim. 24 (7–8) (2003), 851–862. | DOI | MR
[14] Kosuru, G.S.R., Veeramani, P.: A note on existence and convergence of best proximity points for pointwise cyclic contractions. Numer. Funct. Anal. Optim. 32 (7) (2011), 821–830. | DOI | MR
[15] Prolla, J.B.: Fixed-point theorems for set-valued mappings and existence of best approximants. Numer. Funct. Anal. Optim. 5 (4) (1983), 449–455. | DOI | MR
[16] Raj, V.S.: A best proximity point theorem for weakly contractive non-self mappings. Nonlinear Anal. TMA 74 (14) (2011), 4804–4808. | MR
[17] Reich, S.: Approximate selections, best approximations, fixed points, and invariant sets. J. Math. Anal. Appl. 62 (1) (1978), 104–113. | DOI | MR
[18] Sehgal, V.M., Singh, S.P.: A generalization to multifunctions of Fan’s best approximation theorem. Proc. Amer. Math. Soc. 102 (3) (1988), 534–537. | MR
[19] Sehgal, V.M., Singh, S.P.: A theorem on best approximations. Numer. Funct. Anal. Optim. 10 (1–2) (1989), 181–184. | DOI | MR
[20] Suzuki, T.: A generalized Banach contraction principle which characterizes metric completeness. Proc. Amer. Math. Soc. 136 (2008), 1861–1869. | DOI | MR
[21] Veeramani, P., Kirk, W.A., Eldred, A.A.: Proximal normal structure and relatively nonexpansive mappings. Stud. Math. 171 (3) (2005), 283–293. | DOI | MR
[22] Vetrivel, V., Veeramani, P., Bhattacharyya, P.: Some extensions of Fan’s best approximation theorem. Numer. Funct. Anal. Optim. 13 (3–4) (1992), 397–402. | DOI | MR
Cité par Sources :