Weak normal and quasinormal families of holomorphic curves
Archivum mathematicum, Tome 54 (2018) no. 3, pp. 153-163 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we introduce the notion of weak normal and quasinormal families of holomorphic curves from a domain in $\mathbb{C}$ into projective spaces. We will prove some criteria for the weak normality and quasinormality of at most a certain order for such families of holomorphic curves.
In this paper we introduce the notion of weak normal and quasinormal families of holomorphic curves from a domain in $\mathbb{C}$ into projective spaces. We will prove some criteria for the weak normality and quasinormality of at most a certain order for such families of holomorphic curves.
DOI : 10.5817/AM2018-3-153
Classification : 30D35, 32H02, 32H04, 32H30
Keywords: weak normal; quasinormal family; holomorphic curve; meromorphic mappings
@article{10_5817_AM2018_3_153,
     author = {Quang, Si Duc and Quan, Dau Hong},
     title = {Weak normal and quasinormal families of holomorphic curves},
     journal = {Archivum mathematicum},
     pages = {153--163},
     year = {2018},
     volume = {54},
     number = {3},
     doi = {10.5817/AM2018-3-153},
     mrnumber = {3847322},
     zbl = {06940795},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2018-3-153/}
}
TY  - JOUR
AU  - Quang, Si Duc
AU  - Quan, Dau Hong
TI  - Weak normal and quasinormal families of holomorphic curves
JO  - Archivum mathematicum
PY  - 2018
SP  - 153
EP  - 163
VL  - 54
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2018-3-153/
DO  - 10.5817/AM2018-3-153
LA  - en
ID  - 10_5817_AM2018_3_153
ER  - 
%0 Journal Article
%A Quang, Si Duc
%A Quan, Dau Hong
%T Weak normal and quasinormal families of holomorphic curves
%J Archivum mathematicum
%D 2018
%P 153-163
%V 54
%N 3
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2018-3-153/
%R 10.5817/AM2018-3-153
%G en
%F 10_5817_AM2018_3_153
Quang, Si Duc; Quan, Dau Hong. Weak normal and quasinormal families of holomorphic curves. Archivum mathematicum, Tome 54 (2018) no. 3, pp. 153-163. doi: 10.5817/AM2018-3-153

[1] Aladro, G., Krantz, S.G.: A criterion for normality in $\mathbb{C}^n$. J. Math. Anal. Appl. 161 (1991), 1–8. | DOI | MR

[2] Bar, R., Grahl, J., Nevo, S.: Differential inequalities and quasinormal families. Anal. Math. Phys. 4 (2004), 66–71. | MR

[3] Chuang, C.T.: Normal families of meromorphic functions. World Scientific Publishing Co. Pte. Ltd., 1993. | MR

[4] Dethloff, G., Thai, D.D., Trang, P.N.T.: Normal families of meromorphic mappings of several complex variables for moving hypersurfaces in a complex projective space. Nagoya Math. J. 217 (2015), 23–59. | DOI | MR

[5] Fujimoto, H.: On families of meromorphic maps into the complex projective space. Nagoya Math. J. 54 (1974), 21–51. | DOI | MR

[6] Mai, P.N., Thai, D.D., Trang, P.N.T.: Normal families of meromorphic mappings of several complex variables into $¶^N(\mathbb{C})$. Nagoya Math. J. 180 (2005), 91–110. | DOI | MR

[7] Nevo, S., Pang, X., Zalcman, L.: Quasinormality and meromorphic functions with multiple zeros. J. d'Analyse Math. 101 (2007), 1–23. | DOI | MR

[8] Noguchi, J., Ochiai, T.: Introduction to geometric function theory in several complex variables. Transl. Math. Monogr. (1990). | DOI | MR

[9] Noguchi, J., Winkelmann, J.: Holomorphic curves and integral points off divisors. Math. Z. 239 (2002), 593–610. | DOI | MR

[10] Pang, X., Nevo, S., Zalcman, L.: Quasinormal families of meromorphic functions. Rev. Mat. Iberoamericana 21 (2005), 249–262. | DOI | MR

[11] Quang, S.D.: Extension and normality of meromorphic mappings into complex projective varieties. Ann. Polon. Math. 104 (2012), 279–292. | DOI | MR

[12] Quang, S.D., Tan, T.V.: Normal families of meromorphic mappings of several complex variables into $\mathbb{C}P^n$ for moving hypersurfaces. Ann. Polon. Math. 94 (2008), 97–110. | DOI | MR

[13] Stoll, W.: Normal families of non-negative divisors. Math. Z. 84 (1964), 154–218. | DOI | MR

[14] Thai, D.D., Trang, P.N.T., Huong, P.D.: Families of normal maps in several complex variables and hyperbolicity of complex spaces. Complex Var. Elliptic Equ. 48 (2003), 469–482. | MR

[15] Zalcman, L.: Normal families, new perspectives. Bull. Amer. Math. Soc. 35 (1998), 215–230. | DOI | MR

Cité par Sources :