Keywords: weak normal; quasinormal family; holomorphic curve; meromorphic mappings
@article{10_5817_AM2018_3_153,
author = {Quang, Si Duc and Quan, Dau Hong},
title = {Weak normal and quasinormal families of holomorphic curves},
journal = {Archivum mathematicum},
pages = {153--163},
year = {2018},
volume = {54},
number = {3},
doi = {10.5817/AM2018-3-153},
mrnumber = {3847322},
zbl = {06940795},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2018-3-153/}
}
TY - JOUR AU - Quang, Si Duc AU - Quan, Dau Hong TI - Weak normal and quasinormal families of holomorphic curves JO - Archivum mathematicum PY - 2018 SP - 153 EP - 163 VL - 54 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2018-3-153/ DO - 10.5817/AM2018-3-153 LA - en ID - 10_5817_AM2018_3_153 ER -
Quang, Si Duc; Quan, Dau Hong. Weak normal and quasinormal families of holomorphic curves. Archivum mathematicum, Tome 54 (2018) no. 3, pp. 153-163. doi: 10.5817/AM2018-3-153
[1] Aladro, G., Krantz, S.G.: A criterion for normality in $\mathbb{C}^n$. J. Math. Anal. Appl. 161 (1991), 1–8. | DOI | MR
[2] Bar, R., Grahl, J., Nevo, S.: Differential inequalities and quasinormal families. Anal. Math. Phys. 4 (2004), 66–71. | MR
[3] Chuang, C.T.: Normal families of meromorphic functions. World Scientific Publishing Co. Pte. Ltd., 1993. | MR
[4] Dethloff, G., Thai, D.D., Trang, P.N.T.: Normal families of meromorphic mappings of several complex variables for moving hypersurfaces in a complex projective space. Nagoya Math. J. 217 (2015), 23–59. | DOI | MR
[5] Fujimoto, H.: On families of meromorphic maps into the complex projective space. Nagoya Math. J. 54 (1974), 21–51. | DOI | MR
[6] Mai, P.N., Thai, D.D., Trang, P.N.T.: Normal families of meromorphic mappings of several complex variables into $¶^N(\mathbb{C})$. Nagoya Math. J. 180 (2005), 91–110. | DOI | MR
[7] Nevo, S., Pang, X., Zalcman, L.: Quasinormality and meromorphic functions with multiple zeros. J. d'Analyse Math. 101 (2007), 1–23. | DOI | MR
[8] Noguchi, J., Ochiai, T.: Introduction to geometric function theory in several complex variables. Transl. Math. Monogr. (1990). | DOI | MR
[9] Noguchi, J., Winkelmann, J.: Holomorphic curves and integral points off divisors. Math. Z. 239 (2002), 593–610. | DOI | MR
[10] Pang, X., Nevo, S., Zalcman, L.: Quasinormal families of meromorphic functions. Rev. Mat. Iberoamericana 21 (2005), 249–262. | DOI | MR
[11] Quang, S.D.: Extension and normality of meromorphic mappings into complex projective varieties. Ann. Polon. Math. 104 (2012), 279–292. | DOI | MR
[12] Quang, S.D., Tan, T.V.: Normal families of meromorphic mappings of several complex variables into $\mathbb{C}P^n$ for moving hypersurfaces. Ann. Polon. Math. 94 (2008), 97–110. | DOI | MR
[13] Stoll, W.: Normal families of non-negative divisors. Math. Z. 84 (1964), 154–218. | DOI | MR
[14] Thai, D.D., Trang, P.N.T., Huong, P.D.: Families of normal maps in several complex variables and hyperbolicity of complex spaces. Complex Var. Elliptic Equ. 48 (2003), 469–482. | MR
[15] Zalcman, L.: Normal families, new perspectives. Bull. Amer. Math. Soc. 35 (1998), 215–230. | DOI | MR
Cité par Sources :