Keywords: IM-2 forms; complete lifts of vector fields and differential forms; twisted-Dirac structures; tangent functor of higher order; natural transformations
@article{10_5817_AM2018_3_135,
author = {Kouotchop Wamba, P.M. and MBA, A.},
title = {The infinitesimal counterpart of tangent presymplectic groupoids of higher order},
journal = {Archivum mathematicum},
pages = {135--151},
year = {2018},
volume = {54},
number = {3},
doi = {10.5817/AM2018-3-135},
mrnumber = {3847321},
zbl = {06940794},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2018-3-135/}
}
TY - JOUR AU - Kouotchop Wamba, P.M. AU - MBA, A. TI - The infinitesimal counterpart of tangent presymplectic groupoids of higher order JO - Archivum mathematicum PY - 2018 SP - 135 EP - 151 VL - 54 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2018-3-135/ DO - 10.5817/AM2018-3-135 LA - en ID - 10_5817_AM2018_3_135 ER -
%0 Journal Article %A Kouotchop Wamba, P.M. %A MBA, A. %T The infinitesimal counterpart of tangent presymplectic groupoids of higher order %J Archivum mathematicum %D 2018 %P 135-151 %V 54 %N 3 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2018-3-135/ %R 10.5817/AM2018-3-135 %G en %F 10_5817_AM2018_3_135
Kouotchop Wamba, P.M.; MBA, A. The infinitesimal counterpart of tangent presymplectic groupoids of higher order. Archivum mathematicum, Tome 54 (2018) no. 3, pp. 135-151. doi: 10.5817/AM2018-3-135
[1] Bursztyn, H., A., Cabrera: Multiplicative forms at the infinitesimal level. Math. Ann. 353 (2012), 663–705. | DOI | MR
[2] Bursztyn, H., Crainic, M., Weinstein, A., Zhu, C.: Integration of twisted Dirac bracket. Duke Math. J. 123 (2004), 549–607. | DOI | MR
[3] Cantrijn, F., Crampin, M., Sarlet, W., Saunders, D.: The canonical isomorphism between $T^{k}T^{\ast }$ and $T^{\ast }T^{k}$. C. R. Acad. Sci. Paris Sér. I Math. 309 (1989), 1509–1514. | MR
[4] Coste, A., Dazord, P., Weinstein, A.: Groupoïdes symplectiques. Publ. Dep. Math. Nouvelle Ser. A2, Univ. Claude-Bernard, Lyon 2 (1987), 1–62. | MR
[5] Courant, T.J.: Dirac manifolds. Trans. Amer. Math. Soc. 319 (1990), 631–661. | DOI | MR
[6] del Hoyo, M., Ortiz, C.: Morita equivalences of vector bundles. arXiv: 1612. 09289v2 [math. DG], 4 Apr. 2017, 2017. | MR
[7] Gancarzewicz, J., Mikulski, W., Pogoda, Z.: Lifts of some tensor fields and connections to product preserving functors. Nagoya Math. J. 135 (1994), 1–41. | DOI | MR | Zbl
[8] Kolář, I., Michor, P., Slovák, J.: Natural operations in differential geometry. Springer-Verlag, 1993. | MR | Zbl
[9] Kouotchop Wamba, P.M., Ntyam, A.: Tangent lifts of higher order of multiplicative Dirac structures. Arch. Math. (Brno) 49 (2013), 87–104. | DOI | MR
[10] Kouotchop Wamba, P.M., Ntyam, A., Wouafo Kamga, J.: Some properties of tangent Dirac structures of higher order. Arch. Math. (Brno) 48 (2012), 17–22. | MR
[11] Kouotchop Wamba, P.M., Ntyam, A., Wouafo Kamga, J.: Tangent lift of higher order of multivector fields and applications. J. Math. Sci. Adv. Appl. 15 (2012), 89–112. | MR
[12] Mackenzie, K.: On symplectic double groupoids and the duality of Poisson groupoids. Internat. J. Math. 10 (1999), 435–456. | DOI | MR
[13] Mackenzie, K.: Theory of Lie groupoids and Lie algebroids. London Math. Soc. Lecture Note Ser. 213 (2005). | MR
[14] Morimoto, A.: Lifting of some type of tensors fields and connections to tangent bundles of $p^{r}$-velocities. Nagoya Math. J. 40 (1970), 13–31. | DOI | MR
[15] Ortiz, C.: B-field transformations of Poisson groupoids. Proceedings of the Second Latin Congress on Symmetries in Geometry and Physics, Matemática Contemporânea, vol. 41, 2012, pp. 113–148. | MR
[16] Vaisman, I.: Lectures on the geometry of Poisson manifolds. vol. 118, Progress in Math., Birkhäuser, 1994. | MR | Zbl
[17] Wouafo Kamga, J.: On the tangential linearization of Hamiltonian systems. International Centre for Theoretical Physics, Trieste, 1997.
Cité par Sources :