Existence and global attractivity of periodic solutions in a higher order difference equation
Archivum mathematicum, Tome 54 (2018) no. 2, pp. 91-110 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Consider the following higher order difference equation \begin{equation*} x(n+1)= f\big (n,x(n)\big )+ g\big (n, x(n-k)\big )\,, \quad n=0, 1, \dots \end{equation*} where $f(n,x)$ and $g(n,x)\colon \lbrace 0, 1, \dots \rbrace \times [0, \infty ) \rightarrow [0,\infty )$ are continuous functions in $x$ and periodic functions in $n$ with period $p$, and $k$ is a nonnegative integer. We show the existence of a periodic solution $\lbrace \tilde{x}(n)\rbrace $ under certain conditions, and then establish a sufficient condition for $\lbrace \tilde{x}(n)\rbrace $ to be a global attractor of all nonnegative solutions of the equation. Applications to Riccati difference equation and some other difference equations derived from mathematical biology are also given.
Consider the following higher order difference equation \begin{equation*} x(n+1)= f\big (n,x(n)\big )+ g\big (n, x(n-k)\big )\,, \quad n=0, 1, \dots \end{equation*} where $f(n,x)$ and $g(n,x)\colon \lbrace 0, 1, \dots \rbrace \times [0, \infty ) \rightarrow [0,\infty )$ are continuous functions in $x$ and periodic functions in $n$ with period $p$, and $k$ is a nonnegative integer. We show the existence of a periodic solution $\lbrace \tilde{x}(n)\rbrace $ under certain conditions, and then establish a sufficient condition for $\lbrace \tilde{x}(n)\rbrace $ to be a global attractor of all nonnegative solutions of the equation. Applications to Riccati difference equation and some other difference equations derived from mathematical biology are also given.
DOI : 10.5817/AM2018-2-91
Classification : 39A10, 92D25
Keywords: higher order difference equation; periodic solution; global attractivity; Riccati difference equation; population model
@article{10_5817_AM2018_2_91,
     author = {Qian, Chuanxi and Smith, Justin},
     title = {Existence and global attractivity of periodic solutions in a higher order difference equation},
     journal = {Archivum mathematicum},
     pages = {91--110},
     year = {2018},
     volume = {54},
     number = {2},
     doi = {10.5817/AM2018-2-91},
     mrnumber = {3813737},
     zbl = {06890307},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2018-2-91/}
}
TY  - JOUR
AU  - Qian, Chuanxi
AU  - Smith, Justin
TI  - Existence and global attractivity of periodic solutions in a higher order difference equation
JO  - Archivum mathematicum
PY  - 2018
SP  - 91
EP  - 110
VL  - 54
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2018-2-91/
DO  - 10.5817/AM2018-2-91
LA  - en
ID  - 10_5817_AM2018_2_91
ER  - 
%0 Journal Article
%A Qian, Chuanxi
%A Smith, Justin
%T Existence and global attractivity of periodic solutions in a higher order difference equation
%J Archivum mathematicum
%D 2018
%P 91-110
%V 54
%N 2
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2018-2-91/
%R 10.5817/AM2018-2-91
%G en
%F 10_5817_AM2018_2_91
Qian, Chuanxi; Smith, Justin. Existence and global attractivity of periodic solutions in a higher order difference equation. Archivum mathematicum, Tome 54 (2018) no. 2, pp. 91-110. doi: 10.5817/AM2018-2-91

[1] Agarwal, R.P., Wong, P.J.Y.: Advanced Topics in Difference Equations. Kluwer Academic Publishers, Dordrecht, 1997. | Zbl

[2] Clark, M., Gross, L.J.: Periodic solutions to nonautonomous difference equations. Math. Biosci. 102 (1990), 105–119. | DOI

[3] Graef, J.R., Qian, C.: Global attractivity of the equilibrium of a nonlinear difference equation. Czechoslovak Math. J. 52 (127) (2002), 757–769. | DOI | MR

[4] Graef, J.R., Qian, C.: Global attractivity in a nonlinear difference equation and its application. Dynam. Systems Appl. 15 (2006), 89–96. | MR

[5] Hamaya, Y., Tanaka, T.: Existence of periodic solutions of discrete Ricker delay models. Int. J. Math. Anal. 8 (2017), 939–950. | DOI | MR

[6] Iričanin, B., Stević, S.: Eventually constant solutions of a rational difference equation. Appl. Math. Comput. 215 (2009), 854–856. | MR

[7] Kocic, V.L., Ladas, G.: Global Behavior of Nonlinear Difference Equations of Higher Order with Applications. Kluwer Academic Publishers, Dordrecht, 1993. | Zbl

[8] Kulenovic, M.R.S., Ladas, G.: Dynamics of Second Order Rational Difference Equaitons. Chapman $\&$ Hall/CRC, 2002. | MR

[9] Leng, J.: Existence of periodic solutions for higher-order nonlinear difference equations. Electron. J. Differential Equations 134 (2016), 10pp. | MR

[10] Padhi, S., Qian, C.: Global attractivity in a higher order nonlinear difference equation. Dynam. Contin. Discrete Impuls. Systems 19 (2012), 95–106. | MR

[11] Papaschinopoulos, G., Schinas, C.J., Ellina, G.: On the dynamics of the solutions of a biological model. J. Differ. Equations Appl. 20 (2014), 694–705. | DOI | MR

[12] Pielou, E.C.: An Introduction to Mathematical Ecology. Wiley Interscience, New York, 1969.

[13] Pielou, E.C.: Population and Community Ecology. Gordon and Breach, New York, 1974.

[14] Qian, C.: Global stability in a nonautonomous genotype selection model. Quart. Appl. Math. 61 (2003), 265–277. | DOI | MR

[15] Qian, C.: Global attractivity of periodic solutions in a higher order difference equation. Appl. Math. Lett. 26 (2013), 578–583. | DOI | MR

[16] Qian, C.: Global attractivity in a nonlinear difference equation and applications to a biological model. Int. J. Difference Equ. 9 (2014), 233–242. | MR

[17] Raffoul, Y., Yankson, E.: Positive periodic solutions in neutral delay difference equations. Adv. Dyn. Syst. Appl. 5 (2010), 123–130. | MR

[18] Stević, S.: A short proof of the Cushing-Henson conjecture. Discrete Dyn. Nat. Soc. (2006), 5pp., Art. ID 37264. | MR

[19] Stević, S.: Eventual periodicity of some systems of max-type difference equations. Appl. Math. Comput. 236 (2014), 635–641. | MR

[20] Stević, S.: On periodic solutions of a class of $k$-dimensional systems of max-type difference equations. Adv. Difference Equ. (2016), Paper No. 251, 10 pp. | MR

[21] Stević, S.: Bounded and periodic solutions to the linear first-order difference equation on the integer domain. Adv. Difference Equ. (2017), Paper No. 283, 17pp. | MR

[22] Stević, S.: Bounded solutions to nonhomogeneous linear second-order difference equations. Symmetry 9 (2017), Art. No. 227, 31 pp. | DOI

[23] Tilman, D., Wedin, D.: Oscillations and chaos in the dynamics of a perennial grass. Nature 353 (1991), 653–655. | DOI

[24] Wu, J., Liu, Y.: Two periodic solutions of neutral difference equations modeling physiological processes. Discrete Dyn. Nat. Soc. (2006), Art. ID 78145, 12pp. | MR

[25] Zhang, G., Kang, S.G., Cheng, S.S.: Periodic solutions for a couple pair of delay difference equations. Adv. Difference Equ. 3 (2005), 215–226. | MR

Cité par Sources :