Existence and global attractivity of periodic solutions in a higher order difference equation
Archivum mathematicum, Tome 54 (2018) no. 2, pp. 91-110
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Consider the following higher order difference equation \begin{equation*} x(n+1)= f\big (n,x(n)\big )+ g\big (n, x(n-k)\big )\,, \quad n=0, 1, \dots \end{equation*} where $f(n,x)$ and $g(n,x)\colon \lbrace 0, 1, \dots \rbrace \times [0, \infty ) \rightarrow [0,\infty )$ are continuous functions in $x$ and periodic functions in $n$ with period $p$, and $k$ is a nonnegative integer. We show the existence of a periodic solution $\lbrace \tilde{x}(n)\rbrace $ under certain conditions, and then establish a sufficient condition for $\lbrace \tilde{x}(n)\rbrace $ to be a global attractor of all nonnegative solutions of the equation. Applications to Riccati difference equation and some other difference equations derived from mathematical biology are also given.
DOI :
10.5817/AM2018-2-91
Classification :
39A10, 92D25
Keywords: higher order difference equation; periodic solution; global attractivity; Riccati difference equation; population model
Keywords: higher order difference equation; periodic solution; global attractivity; Riccati difference equation; population model
@article{10_5817_AM2018_2_91,
author = {Qian, Chuanxi and Smith, Justin},
title = {Existence and global attractivity of periodic solutions in a higher order difference equation},
journal = {Archivum mathematicum},
pages = {91--110},
publisher = {mathdoc},
volume = {54},
number = {2},
year = {2018},
doi = {10.5817/AM2018-2-91},
mrnumber = {3813737},
zbl = {06890307},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2018-2-91/}
}
TY - JOUR AU - Qian, Chuanxi AU - Smith, Justin TI - Existence and global attractivity of periodic solutions in a higher order difference equation JO - Archivum mathematicum PY - 2018 SP - 91 EP - 110 VL - 54 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2018-2-91/ DO - 10.5817/AM2018-2-91 LA - en ID - 10_5817_AM2018_2_91 ER -
%0 Journal Article %A Qian, Chuanxi %A Smith, Justin %T Existence and global attractivity of periodic solutions in a higher order difference equation %J Archivum mathematicum %D 2018 %P 91-110 %V 54 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.5817/AM2018-2-91/ %R 10.5817/AM2018-2-91 %G en %F 10_5817_AM2018_2_91
Qian, Chuanxi; Smith, Justin. Existence and global attractivity of periodic solutions in a higher order difference equation. Archivum mathematicum, Tome 54 (2018) no. 2, pp. 91-110. doi: 10.5817/AM2018-2-91
Cité par Sources :