Keywords: higher order difference equation; periodic solution; global attractivity; Riccati difference equation; population model
@article{10_5817_AM2018_2_91,
author = {Qian, Chuanxi and Smith, Justin},
title = {Existence and global attractivity of periodic solutions in a higher order difference equation},
journal = {Archivum mathematicum},
pages = {91--110},
year = {2018},
volume = {54},
number = {2},
doi = {10.5817/AM2018-2-91},
mrnumber = {3813737},
zbl = {06890307},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2018-2-91/}
}
TY - JOUR AU - Qian, Chuanxi AU - Smith, Justin TI - Existence and global attractivity of periodic solutions in a higher order difference equation JO - Archivum mathematicum PY - 2018 SP - 91 EP - 110 VL - 54 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2018-2-91/ DO - 10.5817/AM2018-2-91 LA - en ID - 10_5817_AM2018_2_91 ER -
%0 Journal Article %A Qian, Chuanxi %A Smith, Justin %T Existence and global attractivity of periodic solutions in a higher order difference equation %J Archivum mathematicum %D 2018 %P 91-110 %V 54 %N 2 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2018-2-91/ %R 10.5817/AM2018-2-91 %G en %F 10_5817_AM2018_2_91
Qian, Chuanxi; Smith, Justin. Existence and global attractivity of periodic solutions in a higher order difference equation. Archivum mathematicum, Tome 54 (2018) no. 2, pp. 91-110. doi: 10.5817/AM2018-2-91
[1] Agarwal, R.P., Wong, P.J.Y.: Advanced Topics in Difference Equations. Kluwer Academic Publishers, Dordrecht, 1997. | Zbl
[2] Clark, M., Gross, L.J.: Periodic solutions to nonautonomous difference equations. Math. Biosci. 102 (1990), 105–119. | DOI
[3] Graef, J.R., Qian, C.: Global attractivity of the equilibrium of a nonlinear difference equation. Czechoslovak Math. J. 52 (127) (2002), 757–769. | DOI | MR
[4] Graef, J.R., Qian, C.: Global attractivity in a nonlinear difference equation and its application. Dynam. Systems Appl. 15 (2006), 89–96. | MR
[5] Hamaya, Y., Tanaka, T.: Existence of periodic solutions of discrete Ricker delay models. Int. J. Math. Anal. 8 (2017), 939–950. | DOI | MR
[6] Iričanin, B., Stević, S.: Eventually constant solutions of a rational difference equation. Appl. Math. Comput. 215 (2009), 854–856. | MR
[7] Kocic, V.L., Ladas, G.: Global Behavior of Nonlinear Difference Equations of Higher Order with Applications. Kluwer Academic Publishers, Dordrecht, 1993. | Zbl
[8] Kulenovic, M.R.S., Ladas, G.: Dynamics of Second Order Rational Difference Equaitons. Chapman $\&$ Hall/CRC, 2002. | MR
[9] Leng, J.: Existence of periodic solutions for higher-order nonlinear difference equations. Electron. J. Differential Equations 134 (2016), 10pp. | MR
[10] Padhi, S., Qian, C.: Global attractivity in a higher order nonlinear difference equation. Dynam. Contin. Discrete Impuls. Systems 19 (2012), 95–106. | MR
[11] Papaschinopoulos, G., Schinas, C.J., Ellina, G.: On the dynamics of the solutions of a biological model. J. Differ. Equations Appl. 20 (2014), 694–705. | DOI | MR
[12] Pielou, E.C.: An Introduction to Mathematical Ecology. Wiley Interscience, New York, 1969.
[13] Pielou, E.C.: Population and Community Ecology. Gordon and Breach, New York, 1974.
[14] Qian, C.: Global stability in a nonautonomous genotype selection model. Quart. Appl. Math. 61 (2003), 265–277. | DOI | MR
[15] Qian, C.: Global attractivity of periodic solutions in a higher order difference equation. Appl. Math. Lett. 26 (2013), 578–583. | DOI | MR
[16] Qian, C.: Global attractivity in a nonlinear difference equation and applications to a biological model. Int. J. Difference Equ. 9 (2014), 233–242. | MR
[17] Raffoul, Y., Yankson, E.: Positive periodic solutions in neutral delay difference equations. Adv. Dyn. Syst. Appl. 5 (2010), 123–130. | MR
[18] Stević, S.: A short proof of the Cushing-Henson conjecture. Discrete Dyn. Nat. Soc. (2006), 5pp., Art. ID 37264. | MR
[19] Stević, S.: Eventual periodicity of some systems of max-type difference equations. Appl. Math. Comput. 236 (2014), 635–641. | MR
[20] Stević, S.: On periodic solutions of a class of $k$-dimensional systems of max-type difference equations. Adv. Difference Equ. (2016), Paper No. 251, 10 pp. | MR
[21] Stević, S.: Bounded and periodic solutions to the linear first-order difference equation on the integer domain. Adv. Difference Equ. (2017), Paper No. 283, 17pp. | MR
[22] Stević, S.: Bounded solutions to nonhomogeneous linear second-order difference equations. Symmetry 9 (2017), Art. No. 227, 31 pp. | DOI
[23] Tilman, D., Wedin, D.: Oscillations and chaos in the dynamics of a perennial grass. Nature 353 (1991), 653–655. | DOI
[24] Wu, J., Liu, Y.: Two periodic solutions of neutral difference equations modeling physiological processes. Discrete Dyn. Nat. Soc. (2006), Art. ID 78145, 12pp. | MR
[25] Zhang, G., Kang, S.G., Cheng, S.S.: Periodic solutions for a couple pair of delay difference equations. Adv. Difference Equ. 3 (2005), 215–226. | MR
Cité par Sources :