Existence and global attractivity of periodic solutions in a higher order difference equation
Archivum mathematicum, Tome 54 (2018) no. 2, pp. 91-110.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Consider the following higher order difference equation \begin{equation*} x(n+1)= f\big (n,x(n)\big )+ g\big (n, x(n-k)\big )\,, \quad n=0, 1, \dots \end{equation*} where $f(n,x)$ and $g(n,x)\colon \lbrace 0, 1, \dots \rbrace \times [0, \infty ) \rightarrow [0,\infty )$ are continuous functions in $x$ and periodic functions in $n$ with period $p$, and $k$ is a nonnegative integer. We show the existence of a periodic solution $\lbrace \tilde{x}(n)\rbrace $ under certain conditions, and then establish a sufficient condition for $\lbrace \tilde{x}(n)\rbrace $ to be a global attractor of all nonnegative solutions of the equation. Applications to Riccati difference equation and some other difference equations derived from mathematical biology are also given.
DOI : 10.5817/AM2018-2-91
Classification : 39A10, 92D25
Keywords: higher order difference equation; periodic solution; global attractivity; Riccati difference equation; population model
@article{10_5817_AM2018_2_91,
     author = {Qian, Chuanxi and Smith, Justin},
     title = {Existence and global attractivity of periodic solutions in a higher order difference equation},
     journal = {Archivum mathematicum},
     pages = {91--110},
     publisher = {mathdoc},
     volume = {54},
     number = {2},
     year = {2018},
     doi = {10.5817/AM2018-2-91},
     mrnumber = {3813737},
     zbl = {06890307},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2018-2-91/}
}
TY  - JOUR
AU  - Qian, Chuanxi
AU  - Smith, Justin
TI  - Existence and global attractivity of periodic solutions in a higher order difference equation
JO  - Archivum mathematicum
PY  - 2018
SP  - 91
EP  - 110
VL  - 54
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2018-2-91/
DO  - 10.5817/AM2018-2-91
LA  - en
ID  - 10_5817_AM2018_2_91
ER  - 
%0 Journal Article
%A Qian, Chuanxi
%A Smith, Justin
%T Existence and global attractivity of periodic solutions in a higher order difference equation
%J Archivum mathematicum
%D 2018
%P 91-110
%V 54
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2018-2-91/
%R 10.5817/AM2018-2-91
%G en
%F 10_5817_AM2018_2_91
Qian, Chuanxi; Smith, Justin. Existence and global attractivity of periodic solutions in a higher order difference equation. Archivum mathematicum, Tome 54 (2018) no. 2, pp. 91-110. doi : 10.5817/AM2018-2-91. http://geodesic.mathdoc.fr/articles/10.5817/AM2018-2-91/

Cité par Sources :