Polynomials with values which are powers of integers
Archivum mathematicum, Tome 54 (2018) no. 2, pp. 119-125.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $P$ be a polynomial with integral coefficients. Shapiro showed that if the values of $P$ at infinitely many blocks of consecutive integers are of the form $Q(m)$, where $Q$ is a polynomial with integral coefficients, then $P(x)=Q( R(x))$ for some polynomial $R$. In this paper, we show that if the values of $P$ at finitely many blocks of consecutive integers, each greater than a provided bound, are of the form $m^q$ where $q$ is an integer greater than 1, then $P(x)=( R(x))^q$ for some polynomial $R(x)$.
DOI : 10.5817/AM2018-2-119
Classification : 13F20
Keywords: integer-valued polynomial
@article{10_5817_AM2018_2_119,
     author = {Boumahdi, Rachid and Larone, Jesse},
     title = {Polynomials with values which are powers of integers},
     journal = {Archivum mathematicum},
     pages = {119--125},
     publisher = {mathdoc},
     volume = {54},
     number = {2},
     year = {2018},
     doi = {10.5817/AM2018-2-119},
     mrnumber = {3813739},
     zbl = {06890309},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2018-2-119/}
}
TY  - JOUR
AU  - Boumahdi, Rachid
AU  - Larone, Jesse
TI  - Polynomials with values which are powers of integers
JO  - Archivum mathematicum
PY  - 2018
SP  - 119
EP  - 125
VL  - 54
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2018-2-119/
DO  - 10.5817/AM2018-2-119
LA  - en
ID  - 10_5817_AM2018_2_119
ER  - 
%0 Journal Article
%A Boumahdi, Rachid
%A Larone, Jesse
%T Polynomials with values which are powers of integers
%J Archivum mathematicum
%D 2018
%P 119-125
%V 54
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2018-2-119/
%R 10.5817/AM2018-2-119
%G en
%F 10_5817_AM2018_2_119
Boumahdi, Rachid; Larone, Jesse. Polynomials with values which are powers of integers. Archivum mathematicum, Tome 54 (2018) no. 2, pp. 119-125. doi : 10.5817/AM2018-2-119. http://geodesic.mathdoc.fr/articles/10.5817/AM2018-2-119/

Cité par Sources :