Polynomials with values which are powers of integers
Archivum mathematicum, Tome 54 (2018) no. 2, pp. 119-125 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $P$ be a polynomial with integral coefficients. Shapiro showed that if the values of $P$ at infinitely many blocks of consecutive integers are of the form $Q(m)$, where $Q$ is a polynomial with integral coefficients, then $P(x)=Q( R(x))$ for some polynomial $R$. In this paper, we show that if the values of $P$ at finitely many blocks of consecutive integers, each greater than a provided bound, are of the form $m^q$ where $q$ is an integer greater than 1, then $P(x)=( R(x))^q$ for some polynomial $R(x)$.
Let $P$ be a polynomial with integral coefficients. Shapiro showed that if the values of $P$ at infinitely many blocks of consecutive integers are of the form $Q(m)$, where $Q$ is a polynomial with integral coefficients, then $P(x)=Q( R(x))$ for some polynomial $R$. In this paper, we show that if the values of $P$ at finitely many blocks of consecutive integers, each greater than a provided bound, are of the form $m^q$ where $q$ is an integer greater than 1, then $P(x)=( R(x))^q$ for some polynomial $R(x)$.
DOI : 10.5817/AM2018-2-119
Classification : 13F20
Keywords: integer-valued polynomial
@article{10_5817_AM2018_2_119,
     author = {Boumahdi, Rachid and Larone, Jesse},
     title = {Polynomials with values which are powers of integers},
     journal = {Archivum mathematicum},
     pages = {119--125},
     year = {2018},
     volume = {54},
     number = {2},
     doi = {10.5817/AM2018-2-119},
     mrnumber = {3813739},
     zbl = {06890309},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2018-2-119/}
}
TY  - JOUR
AU  - Boumahdi, Rachid
AU  - Larone, Jesse
TI  - Polynomials with values which are powers of integers
JO  - Archivum mathematicum
PY  - 2018
SP  - 119
EP  - 125
VL  - 54
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2018-2-119/
DO  - 10.5817/AM2018-2-119
LA  - en
ID  - 10_5817_AM2018_2_119
ER  - 
%0 Journal Article
%A Boumahdi, Rachid
%A Larone, Jesse
%T Polynomials with values which are powers of integers
%J Archivum mathematicum
%D 2018
%P 119-125
%V 54
%N 2
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2018-2-119/
%R 10.5817/AM2018-2-119
%G en
%F 10_5817_AM2018_2_119
Boumahdi, Rachid; Larone, Jesse. Polynomials with values which are powers of integers. Archivum mathematicum, Tome 54 (2018) no. 2, pp. 119-125. doi: 10.5817/AM2018-2-119

[1] Baker, A.: Bounds for the solutions of the hyperelliptic equation. Proc. Cambridge Philos. Soc. 65 (1969), 439–444.

[2] Fuchs, W.H.J.: A polynomial the square of another polynomial. Amer. Math. Monthly 57 (1950), 114–116.

[3] Jordan, C.: Calculus of Finite Differences. Chelsea Publishing Company, New York, N.Y., 1950, 2nd edition.

[4] Kojima, T.: Note on number-theoretical properties of algebraic functions. Tohoku Math. J. 8 (1915).

[5] LeVeque, W.J.: On the equation $y^m=f(x)$. Acta. Arith. IX (1964), 209–219. | DOI

[6] Masser, D.W.: Polynomial bounds for Diophantine equations. Amer. Math. Monthly (1980), 486–488.

[7] Poulakis, D.: A simple method for solving the Diophantine equation $Y^2=X^4+aX^3+bX^2+cX+d$. Elem. Math. 54 (1) (1999), 32–36.

[8] Rolle, M.: Traité d’algèbre. Paris, 1690.

[9] Shapiro, H.S.: The range of an integer-valued polynomial. Amer. Math. Monthly 64 (1957). | DOI

[10] Szalay, L.: Superelliptic equations of the form $y^p=x^{kp}+a_{kp-1}x^{kp-1}+\cdots +a_0$. Bull. Greek Math. Soc. 46 (2002), 23–33. | MR

[11] Tijdeman, R.: On the equation of Catalan. Acta Arith. 29 (2) (1976), 197–209. | DOI

[12] Voutier, P.M.: An upper bound for the size of integral solutions to $Y^m=f(X)$. J. Number Theory 53 (1995), 247–271. | DOI

[13] Walsh, P.G.: A quantitative version of Runge’s theorem on Diophantine equations. Acta Arith. 62 (2) (1992), 157–172. | DOI

Cité par Sources :