Polynomials with values which are powers of integers
Archivum mathematicum, Tome 54 (2018) no. 2, pp. 119-125
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $P$ be a polynomial with integral coefficients. Shapiro showed that if the values of $P$ at infinitely many blocks of consecutive integers are of the form $Q(m)$, where $Q$ is a polynomial with integral coefficients, then $P(x)=Q( R(x))$ for some polynomial $R$. In this paper, we show that if the values of $P$ at finitely many blocks of consecutive integers, each greater than a provided bound, are of the form $m^q$ where $q$ is an integer greater than 1, then $P(x)=( R(x))^q$ for some polynomial $R(x)$.
@article{10_5817_AM2018_2_119,
author = {Boumahdi, Rachid and Larone, Jesse},
title = {Polynomials with values which are powers of integers},
journal = {Archivum mathematicum},
pages = {119--125},
publisher = {mathdoc},
volume = {54},
number = {2},
year = {2018},
doi = {10.5817/AM2018-2-119},
mrnumber = {3813739},
zbl = {06890309},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2018-2-119/}
}
TY - JOUR AU - Boumahdi, Rachid AU - Larone, Jesse TI - Polynomials with values which are powers of integers JO - Archivum mathematicum PY - 2018 SP - 119 EP - 125 VL - 54 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2018-2-119/ DO - 10.5817/AM2018-2-119 LA - en ID - 10_5817_AM2018_2_119 ER -
Boumahdi, Rachid; Larone, Jesse. Polynomials with values which are powers of integers. Archivum mathematicum, Tome 54 (2018) no. 2, pp. 119-125. doi: 10.5817/AM2018-2-119
Cité par Sources :