@article{10_5817_AM2018_2_119,
author = {Boumahdi, Rachid and Larone, Jesse},
title = {Polynomials with values which are powers of integers},
journal = {Archivum mathematicum},
pages = {119--125},
year = {2018},
volume = {54},
number = {2},
doi = {10.5817/AM2018-2-119},
mrnumber = {3813739},
zbl = {06890309},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2018-2-119/}
}
TY - JOUR AU - Boumahdi, Rachid AU - Larone, Jesse TI - Polynomials with values which are powers of integers JO - Archivum mathematicum PY - 2018 SP - 119 EP - 125 VL - 54 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2018-2-119/ DO - 10.5817/AM2018-2-119 LA - en ID - 10_5817_AM2018_2_119 ER -
Boumahdi, Rachid; Larone, Jesse. Polynomials with values which are powers of integers. Archivum mathematicum, Tome 54 (2018) no. 2, pp. 119-125. doi: 10.5817/AM2018-2-119
[1] Baker, A.: Bounds for the solutions of the hyperelliptic equation. Proc. Cambridge Philos. Soc. 65 (1969), 439–444.
[2] Fuchs, W.H.J.: A polynomial the square of another polynomial. Amer. Math. Monthly 57 (1950), 114–116.
[3] Jordan, C.: Calculus of Finite Differences. Chelsea Publishing Company, New York, N.Y., 1950, 2nd edition.
[4] Kojima, T.: Note on number-theoretical properties of algebraic functions. Tohoku Math. J. 8 (1915).
[5] LeVeque, W.J.: On the equation $y^m=f(x)$. Acta. Arith. IX (1964), 209–219. | DOI
[6] Masser, D.W.: Polynomial bounds for Diophantine equations. Amer. Math. Monthly (1980), 486–488.
[7] Poulakis, D.: A simple method for solving the Diophantine equation $Y^2=X^4+aX^3+bX^2+cX+d$. Elem. Math. 54 (1) (1999), 32–36.
[8] Rolle, M.: Traité d’algèbre. Paris, 1690.
[9] Shapiro, H.S.: The range of an integer-valued polynomial. Amer. Math. Monthly 64 (1957). | DOI
[10] Szalay, L.: Superelliptic equations of the form $y^p=x^{kp}+a_{kp-1}x^{kp-1}+\cdots +a_0$. Bull. Greek Math. Soc. 46 (2002), 23–33. | MR
[11] Tijdeman, R.: On the equation of Catalan. Acta Arith. 29 (2) (1976), 197–209. | DOI
[12] Voutier, P.M.: An upper bound for the size of integral solutions to $Y^m=f(X)$. J. Number Theory 53 (1995), 247–271. | DOI
[13] Walsh, P.G.: A quantitative version of Runge’s theorem on Diophantine equations. Acta Arith. 62 (2) (1992), 157–172. | DOI
Cité par Sources :