Keywords: general connection; tangent valued form; functorial prolongation; Weil functor
@article{10_5817_AM2018_2_111,
author = {Kol\'a\v{r}, Ivan},
title = {Some functorial prolongations of general connections},
journal = {Archivum mathematicum},
pages = {111--117},
year = {2018},
volume = {54},
number = {2},
doi = {10.5817/AM2018-2-111},
mrnumber = {3813738},
zbl = {06890308},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2018-2-111/}
}
Kolář, Ivan. Some functorial prolongations of general connections. Archivum mathematicum, Tome 54 (2018) no. 2, pp. 111-117. doi: 10.5817/AM2018-2-111
[1] Cabras, A., Kolář, I.: Prolongation of tangent valued forms to Weil bundles. Arch. Math. (Brno) 31 (1995), 139–145. | MR
[2] Ehresmann, C.: Oeuvres complètes et commentés. Cahiers Topol. Géom. Diff. XXIV (Suppl. 1 et 2) (1983).
[3] Kolář, I.: Handbook of Global Analysis. ch. Weil Bundles as Generalized Jet Spaces, pp. 625–665, Elsevier, Amsterdam, 2008. | MR
[4] Kolář, I.: On the functorial prolongations of fiber bundles. Miskolc Math. Notes 14 (2013), 423–431. | DOI | MR
[5] Kolář, I.: Covariant Approach to Weil Bundles. Folia, Masaryk University, Brno (2016).
[6] Kolář, I., Michor, P.W., Slovák, J.: Natural Operations in Differential Geometry. Springer Verlag, 1993.
[7] Mangiarotti, L., Modugno, M.: Graded Lie algebras and connections on a fibered space. J. Math. Pures Appl. (9) 63 (1984), 111–120.
[8] Weil, A.: Théorie des points proches sur les variétes différentielles. Colloque de topol. et géom. diff., Strasbourg (1953), 111–117.
Cité par Sources :