Some functorial prolongations of general connections
Archivum mathematicum, Tome 54 (2018) no. 2, pp. 111-117 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider the problem of prolongating general connections on arbitrary fibered manifolds with respect to a product preserving bundle functor. Our main tools are the theory of Weil algebras and the Frölicher-Nijenhuis bracket.
We consider the problem of prolongating general connections on arbitrary fibered manifolds with respect to a product preserving bundle functor. Our main tools are the theory of Weil algebras and the Frölicher-Nijenhuis bracket.
DOI : 10.5817/AM2018-2-111
Classification : 53C05, 58A20, 58A32
Keywords: general connection; tangent valued form; functorial prolongation; Weil functor
@article{10_5817_AM2018_2_111,
     author = {Kol\'a\v{r}, Ivan},
     title = {Some functorial prolongations of general connections},
     journal = {Archivum mathematicum},
     pages = {111--117},
     year = {2018},
     volume = {54},
     number = {2},
     doi = {10.5817/AM2018-2-111},
     mrnumber = {3813738},
     zbl = {06890308},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2018-2-111/}
}
TY  - JOUR
AU  - Kolář, Ivan
TI  - Some functorial prolongations of general connections
JO  - Archivum mathematicum
PY  - 2018
SP  - 111
EP  - 117
VL  - 54
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2018-2-111/
DO  - 10.5817/AM2018-2-111
LA  - en
ID  - 10_5817_AM2018_2_111
ER  - 
%0 Journal Article
%A Kolář, Ivan
%T Some functorial prolongations of general connections
%J Archivum mathematicum
%D 2018
%P 111-117
%V 54
%N 2
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2018-2-111/
%R 10.5817/AM2018-2-111
%G en
%F 10_5817_AM2018_2_111
Kolář, Ivan. Some functorial prolongations of general connections. Archivum mathematicum, Tome 54 (2018) no. 2, pp. 111-117. doi: 10.5817/AM2018-2-111

[1] Cabras, A., Kolář, I.: Prolongation of tangent valued forms to Weil bundles. Arch. Math. (Brno) 31 (1995), 139–145. | MR

[2] Ehresmann, C.: Oeuvres complètes et commentés. Cahiers Topol. Géom. Diff. XXIV (Suppl. 1 et 2) (1983).

[3] Kolář, I.: Handbook of Global Analysis. ch. Weil Bundles as Generalized Jet Spaces, pp. 625–665, Elsevier, Amsterdam, 2008. | MR

[4] Kolář, I.: On the functorial prolongations of fiber bundles. Miskolc Math. Notes 14 (2013), 423–431. | DOI | MR

[5] Kolář, I.: Covariant Approach to Weil Bundles. Folia, Masaryk University, Brno (2016).

[6] Kolář, I., Michor, P.W., Slovák, J.: Natural Operations in Differential Geometry. Springer Verlag, 1993.

[7] Mangiarotti, L., Modugno, M.: Graded Lie algebras and connections on a fibered space. J. Math. Pures Appl. (9) 63 (1984), 111–120.

[8] Weil, A.: Théorie des points proches sur les variétes différentielles. Colloque de topol. et géom. diff., Strasbourg (1953), 111–117.

Cité par Sources :