On the construction and the realization of wild monoids
Archivum mathematicum, Tome 54 (2018) no. 1, pp. 33-64 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We develop elementary methods of computing the monoid $\boldsymbol{\mathcal{V}}(\boldsymbol{R})$ for a directly-finite regular ring $\boldsymbol{R}$. We construct a class of directly finite non-cancellative refinement monoids and realize them by regular algebras over an arbitrary field.
We develop elementary methods of computing the monoid $\boldsymbol{\mathcal{V}}(\boldsymbol{R})$ for a directly-finite regular ring $\boldsymbol{R}$. We construct a class of directly finite non-cancellative refinement monoids and realize them by regular algebras over an arbitrary field.
DOI : 10.5817/AM2018-1-33
Classification : 06F20, 15A04, 16E20, 16E50
Keywords: monoid; refinement; interpolation; ring; von Neumann regular
@article{10_5817_AM2018_1_33,
     author = {R\r{u}\v{z}i\v{c}ka, Pavel},
     title = {On the construction and the realization of wild monoids},
     journal = {Archivum mathematicum},
     pages = {33--64},
     year = {2018},
     volume = {54},
     number = {1},
     doi = {10.5817/AM2018-1-33},
     mrnumber = {3783290},
     zbl = {06861556},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2018-1-33/}
}
TY  - JOUR
AU  - Růžička, Pavel
TI  - On the construction and the realization of wild monoids
JO  - Archivum mathematicum
PY  - 2018
SP  - 33
EP  - 64
VL  - 54
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2018-1-33/
DO  - 10.5817/AM2018-1-33
LA  - en
ID  - 10_5817_AM2018_1_33
ER  - 
%0 Journal Article
%A Růžička, Pavel
%T On the construction and the realization of wild monoids
%J Archivum mathematicum
%D 2018
%P 33-64
%V 54
%N 1
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2018-1-33/
%R 10.5817/AM2018-1-33
%G en
%F 10_5817_AM2018_1_33
Růžička, Pavel. On the construction and the realization of wild monoids. Archivum mathematicum, Tome 54 (2018) no. 1, pp. 33-64. doi: 10.5817/AM2018-1-33

[1] Ara, P.: The realization problem for von Neumann regular rings. Ring Theory 2007, Proceedings of the fifth China-Japan-Korean conference (H., Marubayashi, K., Masaike, K., Oshiro, M., Sato, eds.), World Scientific, Hackensack, NJ, 2009, pp. 21–37. | MR

[2] Ara, P.: The regular algebra of a poset. Trans. Amer. Math. Soc. 362 (2010), 1505–1546. | DOI | MR

[3] Ara, P., Brustenga, M.: The regular algebra of a quiver. J. Algebra 309 (2007), 207–235. | DOI | MR

[4] Ara, P., Goodearl, K.R.: Tame and wild refinement monoids. Semigroup Forum 91 (2015), 1–27. | DOI | MR

[5] Ara, P., Goodearl, K.R.: The realization problem for some wild monoids and the Atiyah problem. Trans. Amer. Math. Soc. 369 (2017), 5665–5710. | DOI | MR

[6] Ara, P., Moreno, M.A., Pardo, E.: Non stable ${K}$-theory of graph algebras. Algebras Represent. Theory 10 (2007), 157–178. | MR

[7] Chuang, Ch.-L., Lee, P.-H.: On regular subdirect product of simple artinian rings. Pacific J. Math. 142 (1990), 17–21. | DOI | MR

[8] Goodearl, K.R.: Partially Ordered Abelian Groups with Interpolation. American Mathematical Society, Providence Rhode Island, 1986. | MR

[9] Goodearl, K.R.: Von Neumann Regular Rings. Krieger Pub. Co., 1991. | MR

[10] Goodearl, K.R.: Von Neumann regular rings and direct sum decomposition problems. Abelian Groups and Modules, Kluwer, Dordrecht, 1995, pp. 249–255. | MR

[11] Moncasi, J.: A regular ring whose ${K}_0$ is not a Riesz group. Comm. Algebra 13 (1985), 125–131. | DOI | MR

[12] Wehrung, F.: Non-measurability properties of interpolation vector spaces. Israel J. Math. 103 (1998), 177–206. | DOI | MR

Cité par Sources :