Keywords: complex structures; energy functional; isotropic almost complex structure; unit tangent bundle; variational problem; tension field
@article{10_5817_AM2018_1_15,
author = {Baghban, Amir and Abedi, Esmaeil},
title = {Isotropic almost complex structures and harmonic unit vector fields},
journal = {Archivum mathematicum},
pages = {15--32},
year = {2018},
volume = {54},
number = {1},
doi = {10.5817/AM2018-1-15},
mrnumber = {3783289},
zbl = {06861555},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2018-1-15/}
}
TY - JOUR AU - Baghban, Amir AU - Abedi, Esmaeil TI - Isotropic almost complex structures and harmonic unit vector fields JO - Archivum mathematicum PY - 2018 SP - 15 EP - 32 VL - 54 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2018-1-15/ DO - 10.5817/AM2018-1-15 LA - en ID - 10_5817_AM2018_1_15 ER -
Baghban, Amir; Abedi, Esmaeil. Isotropic almost complex structures and harmonic unit vector fields. Archivum mathematicum, Tome 54 (2018) no. 1, pp. 15-32. doi: 10.5817/AM2018-1-15
[1] Abbassi, M.T.K., Calvaruso, G., Perrone, D.: Harmonicity of unit vector fields with respect to Riemannian g-natural metrics. Differential Geom. Appl. 27 (2009), 157–169. | DOI | MR
[2] Abbassi, M.T.K., Calvaruso, G., Perrone, D.: Harmonic sections of tangent bundles equipped with Riemannian g-natural metrics. Quart. J. Math. 62 (2011), 259–288. | DOI | MR
[3] Abbassi, M.T.K., Sarih, M.: On some hereditary properties of Riemannian g-natural metrics on tangent bundles of Riemannian manifolds. Differential Geom. Appl. 22 (2005), 19–47. | MR
[4] Aguilar, R.M.: Isotropic almost complex structures on tangent bundles. Manuscripta Math. 90 (1996), 429–436. | DOI | MR
[5] Baghban, A., Abedi, E.: On the harmonic vector fields. $8$th Seminar on Geometry and Topology, Amirkabir University of Technology, 2015.
[6] Bouzir, H., Beldjilali, G., Belkhelfa, M., Wade, A.: Generalized kahler manifolds and transformation of generalized contact structures. Arch. Math. (Brno) 53 (2017), 35–48. | DOI | MR
[7] Calvaruso, G.: Harmonicity properties of invariant vector fields on three-dimensional Lorentzian Lie groups. J. Geom. Phys. 61 (2011), 498–515. | DOI | MR
[8] Calvaruso, G.: Harmonicity of vector fields on four-dimensional generalized symmetric spaces. Central Eur. J. Math. 10 (2012), 411–425. | DOI | MR
[9] Dragomir, S., Perrone, D.: Harmonic vector fields, Variational Principles and Differential Geometry. Elsevier, 2012. | MR
[10] Friswell, R.M.: Harmonic vector fields on pseudo-Riemannian manifolds. Ph.D. thesis, 2014.
[11] Friswell, R.M., Wood, C.M.: Harmonic vector fields on pseudo-Riemannian manifolds. J. Geom. Phys. 112 (2017), 45–58. | DOI | MR
[12] Gil-Medrano, O.: Relationship between volume and energy of unit vector fields. Differential Geom. Appl. 15 (2001), 137–152. | DOI | MR
[13] Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds. Tôhoku Math. J. 10, 338–354. | DOI | MR
[14] Urakawa, H.: Calculus of variations and harmonic maps. American Mathematical Society, 1993. | MR
Cité par Sources :