On minimal ideals in the ring of real-valued continuous functions on a frame
Archivum mathematicum, Tome 54 (2018) no. 1, pp. 1-13 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $\mathcal{R}L$ be the ring of real-valued continuous functions on a frame $L$. The aim of this paper is to study the relation between minimality of ideals $I$ of $\mathcal{R}L$ and the set of all zero sets in $L$ determined by elements of $I$. To do this, the concepts of coz-disjointness, coz-spatiality and coz-density are introduced. In the case of a coz-dense frame $L$, it is proved that the $f$-ring $\mathcal{R}L$ is isomorphic to the $f$-ring $ C(\Sigma L)$ of all real continuous functions on the topological space $\Sigma L$. Finally, a one-one correspondence is presented between the set of isolated points of $\Sigma L$ and the set of atoms of $L$.
Let $\mathcal{R}L$ be the ring of real-valued continuous functions on a frame $L$. The aim of this paper is to study the relation between minimality of ideals $I$ of $\mathcal{R}L$ and the set of all zero sets in $L$ determined by elements of $I$. To do this, the concepts of coz-disjointness, coz-spatiality and coz-density are introduced. In the case of a coz-dense frame $L$, it is proved that the $f$-ring $\mathcal{R}L$ is isomorphic to the $f$-ring $ C(\Sigma L)$ of all real continuous functions on the topological space $\Sigma L$. Finally, a one-one correspondence is presented between the set of isolated points of $\Sigma L$ and the set of atoms of $L$.
DOI : 10.5817/AM2018-1-1
Classification : 06D22, 13A15, 54C30
Keywords: ring of real-valued continuous functions on a frame; coz-disjoint; coz-dense and coz-spatial frames; zero sets in pointfree topology; $z$-ideal; strongly $z$-ideal
@article{10_5817_AM2018_1_1,
     author = {Karimi Feizabadi, Abolghasem and Estaji, Ali Akbar and Abedi, Mostafa},
     title = {On minimal ideals in the ring of real-valued continuous functions on a frame},
     journal = {Archivum mathematicum},
     pages = {1--13},
     year = {2018},
     volume = {54},
     number = {1},
     doi = {10.5817/AM2018-1-1},
     mrnumber = {3783288},
     zbl = {06861554},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2018-1-1/}
}
TY  - JOUR
AU  - Karimi Feizabadi, Abolghasem
AU  - Estaji, Ali Akbar
AU  - Abedi, Mostafa
TI  - On minimal ideals in the ring of real-valued continuous functions on a frame
JO  - Archivum mathematicum
PY  - 2018
SP  - 1
EP  - 13
VL  - 54
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2018-1-1/
DO  - 10.5817/AM2018-1-1
LA  - en
ID  - 10_5817_AM2018_1_1
ER  - 
%0 Journal Article
%A Karimi Feizabadi, Abolghasem
%A Estaji, Ali Akbar
%A Abedi, Mostafa
%T On minimal ideals in the ring of real-valued continuous functions on a frame
%J Archivum mathematicum
%D 2018
%P 1-13
%V 54
%N 1
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2018-1-1/
%R 10.5817/AM2018-1-1
%G en
%F 10_5817_AM2018_1_1
Karimi Feizabadi, Abolghasem; Estaji, Ali Akbar; Abedi, Mostafa. On minimal ideals in the ring of real-valued continuous functions on a frame. Archivum mathematicum, Tome 54 (2018) no. 1, pp. 1-13. doi: 10.5817/AM2018-1-1

[1] Aliabad, A.R., Azarpanah, F., Paimann, M.: Relative $z$-ideals and $z^0$-ideals in the factor rings of $C(X)$. Bull. Iran. Math. Soc. 36 (2010), 211–226. | MR

[2] Azarpanah, F., Karamzadeh, O.A.S., Rezai Aliabad, A.: On $z^0$-ideals in $C(X)$. Fund. Math. 160 (1999). | MR

[3] Azarpanah, F., Taherifar, A.: Relative $z$-ideals in $C(X)$. Topology Appl. 156 (2009), 1711–1717. | MR

[4] Banaschewski, B.: The real numbers in pointfree topology. Textos de Mathemática (Séries B), No. 12, Departamento de Mathemática da Universidade de Coimbra, Coimbra (1997). | MR

[5] Banaschewski, B., Mulvey, C.J.: Stone-Čech compactification of locales, I. Houston J. Math. 6 (1980), 301–312. | MR

[6] Dube, T.: Concerning $P$-frames, essential $P$-frames and strongly zero-dimensional frame. Algebra Universalis 69 (2009), 115–138. | DOI | MR

[7] Dube, T.: Some algebraic characterizations of F-frames. Algebra Universalis 62 (2009), 273–288. | DOI | MR

[8] Dube, T.: On the ideal of functions with compact support in pointfree function rings. Acta Math. Hungar. 129 (2010), 205–226. | DOI | MR | Zbl

[9] Dube, T.: A note on the socle of certain types of f-rings. Bull. Iran. Math. Soc. 2 (2012), 517–528. | MR

[10] Ebrahimi, M.M., Karimi Feizabadi, A.: Pointfree prime representation of real Riesz maps. Algebra Universalis 54 (2005), 291–299. | DOI | MR

[11] Estaji, A.A., Karimi Feizabadi, A., Abedi, M.: Strongly fixed ideals in $ C (L)$ and compact frames. Arch. Math. (Brno) 51 (2015), 1–12. | DOI | MR

[12] Estaji, A.A., Karimi Feizabadi, A., Abedi, M.: Zero set in pointfree topology and strongly $z$-ideals. Bull. Iran. Math. Soc. 41 (2015), 1071–1084. | MR

[13] Estaji, A.A., Karimi Feizabadi, A., Abedi, M.: Intersection of essential ideals in the ring of real-valued continuous functions on a frame. J. of Algebraic System 5 (2017), no. 2, 149–161. | MR

[14] Gillman, L., Jerison, M.: Rings of continuous functions. Springer-Verlag, 1976. | MR

[15] Gutiérrez García, J., Picado, J., Pultr, A.: Notes on point-free real functions and sublocales. Categorical Methods in Algebra and Topology, Mathematical Texts, no. 46, University of Coimbra, 2014, pp. 167–200. | MR

[16] Karamzadeh, O.A.S., Rostami, M.: On the intrinsic topology and some related ideals of $C(X)$. Proc. Amer. Math. Soc. 93 (1985), 179–184. | MR | Zbl

[17] Picado, J., Pultr, A.: Frames and Locales: Topology without points. Frontiers in Mathematics, Springer Basel, 2012. | MR

Cité par Sources :