The almost Einstein operator for $(2, 3, 5)$ distributions
Archivum mathematicum, Tome 53 (2017) no. 5, pp. 347-370 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For the geometry of oriented $(2, 3, 5)$ distributions $(M, )$, which correspond to regular, normal parabolic geometries of type $(\operatorname{G}_2, P)$ for a particular parabolic subgroup $P \operatorname{G}_2$, we develop the corresponding tractor calculus and use it to analyze the first BGG operator $\Theta_0$ associated to the $7$-dimensional irreducible representation of $\operatorname{G}_2$. We give an explicit formula for the normal connection on the corresponding tractor bundle and use it to derive explicit expressions for this operator. We also show that solutions of this operator are automatically normal, yielding a geometric interpretation of $\ker \Theta_0$: For any $(M, )$, this kernel consists precisely of the almost Einstein scales of the Nurowski conformal structure on $M$ that $\mathbf{D}$ determines. We apply our formula for $\Theta_0$ (1) to recover efficiently some known solutions, (2) to construct a distribution with root type $[3, 1]$ with a nonzero solution, and (3) to show efficiently that the conformal holonomy of a particular $(2, 3, 5)$ conformal structure is equal to $\operatorname{G}_2$.
For the geometry of oriented $(2, 3, 5)$ distributions $(M, )$, which correspond to regular, normal parabolic geometries of type $(\operatorname{G}_2, P)$ for a particular parabolic subgroup $P \operatorname{G}_2$, we develop the corresponding tractor calculus and use it to analyze the first BGG operator $\Theta_0$ associated to the $7$-dimensional irreducible representation of $\operatorname{G}_2$. We give an explicit formula for the normal connection on the corresponding tractor bundle and use it to derive explicit expressions for this operator. We also show that solutions of this operator are automatically normal, yielding a geometric interpretation of $\ker \Theta_0$: For any $(M, )$, this kernel consists precisely of the almost Einstein scales of the Nurowski conformal structure on $M$ that $\mathbf{D}$ determines. We apply our formula for $\Theta_0$ (1) to recover efficiently some known solutions, (2) to construct a distribution with root type $[3, 1]$ with a nonzero solution, and (3) to show efficiently that the conformal holonomy of a particular $(2, 3, 5)$ conformal structure is equal to $\operatorname{G}_2$.
DOI : 10.5817/AM2017-5-347
Classification : 53A30, 53A40, 53C25, 58A30, 58J60
Keywords: $(2, 3, 5)$-distributions; almost Einstein; BGG operators; conformal geometry; invariant differential operators
@article{10_5817_AM2017_5_347,
     author = {Sagerschnig, Katja and Willse, Travis},
     title = {The almost {Einstein} operator for $(2, 3, 5)$ distributions},
     journal = {Archivum mathematicum},
     pages = {347--370},
     year = {2017},
     volume = {53},
     number = {5},
     doi = {10.5817/AM2017-5-347},
     mrnumber = {3746069},
     zbl = {06861562},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2017-5-347/}
}
TY  - JOUR
AU  - Sagerschnig, Katja
AU  - Willse, Travis
TI  - The almost Einstein operator for $(2, 3, 5)$ distributions
JO  - Archivum mathematicum
PY  - 2017
SP  - 347
EP  - 370
VL  - 53
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2017-5-347/
DO  - 10.5817/AM2017-5-347
LA  - en
ID  - 10_5817_AM2017_5_347
ER  - 
%0 Journal Article
%A Sagerschnig, Katja
%A Willse, Travis
%T The almost Einstein operator for $(2, 3, 5)$ distributions
%J Archivum mathematicum
%D 2017
%P 347-370
%V 53
%N 5
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2017-5-347/
%R 10.5817/AM2017-5-347
%G en
%F 10_5817_AM2017_5_347
Sagerschnig, Katja; Willse, Travis. The almost Einstein operator for $(2, 3, 5)$ distributions. Archivum mathematicum, Tome 53 (2017) no. 5, pp. 347-370. doi: 10.5817/AM2017-5-347

[1] An, D., Nurowski, P.: Twistor space for rolling bodies. Comm. Math. Phys. 326 (2014), 393–414, arXiv:1210.3536. | DOI | MR | Zbl

[2] Bailey, T.N., Eastwood, M.G., Gover, A.R.: Thomas’s structure bundle for conformal, projective and related structures. Rocky Mountain J. Math. 24 (1994), 1191–1217, https://projecteuclid.org/euclid.rmjm/1181072333 | DOI | MR | Zbl

[3] Bor, G., Montgomery, R.: $G_2$ and the rolling distribution. Enseign. Math. 55 (2009), 157–196, arXiv:math/0612469. | DOI | MR | Zbl

[4] Bryant, R.: Developments of Cartan geometry and related mathematical problems. RIMS Symposium Proceedings, vol. 1502, Kyoto University, 2006, pp. 1–15.

[5] Bryant, R., Hsu, L.: Rigidity of integral curves of rank two distributions. Invent. Math. 114 (1993), 435–461. | DOI | MR

[6] Calderbank, D.M.J., Diemer, T.: Differential invariants and curved Bernstein-Gelfand-Gelfand sequences. J. Reine Angew. Math. 537 (2001), 67–103, arXiv:math/0001158. | MR | Zbl

[7] Čap, A.: Correspondence spaces and twistor spaces for parabolic geometries. J. Reine Angew. Math. 582 (2005), 143–172, arXiv:math/0102097. | DOI | MR | Zbl

[8] Čap, A., Sagerschnig, K.: On Nurowski’s conformal structure associated to a generic rank two distribution in dimension five. J. Geom. Phys. 59 (2009), 901–912, arXiv:0710.2208. | DOI | MR | Zbl

[9] Čap, A., Slovák, J.: Weyl structures for parabolic geometries. Math. Scand. 93 (2003), 53–90, arXiv:math/0001166. | DOI | MR | Zbl

[10] Čap, A., Slovák, J.: Parabolic geometries I: Background and general theory. Mathematical Surveys and Monographs, American Mathematical Society, Providence, 2009, pp. x+628pp. | MR | Zbl

[11] Čap, A., Slovák, J., Souček, V.: Bernstein-Gelfand-Gelfand Sequences. Ann. Math. (2) 154 (2001), 97–113, arXiv:math/0001164. | MR | Zbl

[12] Cartan, É.: Les systèmes de Pfaff a cinq variables et les équations aux derivés partielles du second ordre. Ann. Sci. École Norm. Sup. (3) 27 (1910), 109–192. | DOI | MR

[13] Doubrov, B., Govorov, A.:

[14] Goursat, É.: Leçons sur le problème de Pfaff. Librairie Scientifique J. Hermann, Paris, 1922.

[15] Gover, A.R., Panai, R., Willse, T.: Nearly Kähler geometry and $(2,3,5)$-distributions via projective holonomy. to appear. 57pp. arXiv:1403.1959. | MR

[16] Graham, C.R., Willse, T.: Parallel tractor extension and ambient metrics of holonomy split $G_2$. J. Differential Geom. 92 (2012), 463–506, arXiv:1109.3504. | DOI | MR | Zbl

[17] Hammerl, M., Sagerschnig, K.: Conformal structures associated to generic rank 2 distributions on 5-manifolds — Characterization and Killing-field decomposition. SIGMA 5 (2009), arXiv:0908.0483. | MR | Zbl

[18] Hammerl, M., Somberg, P., Souček, V., Šilhan, J.: On a new normalization for tractor covariant derivatives. J. Eur. Math. Soc. (JEMS) 14 (2012), 1859–1883, arXiv:1003.6090. | DOI | MR | Zbl

[19] Leistner, T., Nurowski, P.: Conformal structures with $G_{2(2)}$-ambient metrics. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 11 (2012), 407–436, arXiv:0904.0186. | MR

[20] Nurowski, P.: Differential equations and conformal structures. J. Geom. Phys. 55 (2005), 19–49, arXiv:math/0406400. | MR | Zbl

[21] Sagerschnig, K.: Split octonions and generic rank two distributions in dimension five. Arch. Math. (Brno) 42 (Supplement) (2006), 329–339. | MR | Zbl

[22] Sagerschnig, K.: Weyl structures for generic rank two distributions in dimension five. Ph.D. thesis, Universität Wien, 2008.

[23] Sagerschnig, K., Willse, T.: The geometry of almost Einstein $(2, 3, 5)$ distributions. SIGMA 13 (2017), 56pp., arXiv:1606.01069. | MR | Zbl

[24] Westbury, B.: Sextonions and the magic square. J. London Math. Soc. 73 (2006), 455–474, arXiv:math/0411428. | DOI | MR | Zbl

[25] Willse, T.: Highly symmetric 2-plane fields on 5-manifolds and 5-dimensional Heisenberg group holonomy. Differential Geom. Appl. 33 (2014), 81–111, arXiv:1302.7163. | DOI | MR | Zbl

[26] Zelenko, I.: On variational approach to differential invariants of rank two distributions. Differential Geom. Appl. 24 (2006), 235–259, arXiv:math/040217. | DOI | MR | Zbl

Cité par Sources :