Keywords: $(2, 3, 5)$-distributions; almost Einstein; BGG operators; conformal geometry; invariant differential operators
@article{10_5817_AM2017_5_347,
author = {Sagerschnig, Katja and Willse, Travis},
title = {The almost {Einstein} operator for $(2, 3, 5)$ distributions},
journal = {Archivum mathematicum},
pages = {347--370},
year = {2017},
volume = {53},
number = {5},
doi = {10.5817/AM2017-5-347},
mrnumber = {3746069},
zbl = {06861562},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2017-5-347/}
}
TY - JOUR AU - Sagerschnig, Katja AU - Willse, Travis TI - The almost Einstein operator for $(2, 3, 5)$ distributions JO - Archivum mathematicum PY - 2017 SP - 347 EP - 370 VL - 53 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2017-5-347/ DO - 10.5817/AM2017-5-347 LA - en ID - 10_5817_AM2017_5_347 ER -
Sagerschnig, Katja; Willse, Travis. The almost Einstein operator for $(2, 3, 5)$ distributions. Archivum mathematicum, Tome 53 (2017) no. 5, pp. 347-370. doi: 10.5817/AM2017-5-347
[1] An, D., Nurowski, P.: Twistor space for rolling bodies. Comm. Math. Phys. 326 (2014), 393–414, arXiv:1210.3536. | DOI | MR | Zbl
[2] Bailey, T.N., Eastwood, M.G., Gover, A.R.: Thomas’s structure bundle for conformal, projective and related structures. Rocky Mountain J. Math. 24 (1994), 1191–1217, https://projecteuclid.org/euclid.rmjm/1181072333 | DOI | MR | Zbl
[3] Bor, G., Montgomery, R.: $G_2$ and the rolling distribution. Enseign. Math. 55 (2009), 157–196, arXiv:math/0612469. | DOI | MR | Zbl
[4] Bryant, R.: Developments of Cartan geometry and related mathematical problems. RIMS Symposium Proceedings, vol. 1502, Kyoto University, 2006, pp. 1–15.
[5] Bryant, R., Hsu, L.: Rigidity of integral curves of rank two distributions. Invent. Math. 114 (1993), 435–461. | DOI | MR
[6] Calderbank, D.M.J., Diemer, T.: Differential invariants and curved Bernstein-Gelfand-Gelfand sequences. J. Reine Angew. Math. 537 (2001), 67–103, arXiv:math/0001158. | MR | Zbl
[7] Čap, A.: Correspondence spaces and twistor spaces for parabolic geometries. J. Reine Angew. Math. 582 (2005), 143–172, arXiv:math/0102097. | DOI | MR | Zbl
[8] Čap, A., Sagerschnig, K.: On Nurowski’s conformal structure associated to a generic rank two distribution in dimension five. J. Geom. Phys. 59 (2009), 901–912, arXiv:0710.2208. | DOI | MR | Zbl
[9] Čap, A., Slovák, J.: Weyl structures for parabolic geometries. Math. Scand. 93 (2003), 53–90, arXiv:math/0001166. | DOI | MR | Zbl
[10] Čap, A., Slovák, J.: Parabolic geometries I: Background and general theory. Mathematical Surveys and Monographs, American Mathematical Society, Providence, 2009, pp. x+628pp. | MR | Zbl
[11] Čap, A., Slovák, J., Souček, V.: Bernstein-Gelfand-Gelfand Sequences. Ann. Math. (2) 154 (2001), 97–113, arXiv:math/0001164. | MR | Zbl
[12] Cartan, É.: Les systèmes de Pfaff a cinq variables et les équations aux derivés partielles du second ordre. Ann. Sci. École Norm. Sup. (3) 27 (1910), 109–192. | DOI | MR
[13] Doubrov, B., Govorov, A.:
[14] Goursat, É.: Leçons sur le problème de Pfaff. Librairie Scientifique J. Hermann, Paris, 1922.
[15] Gover, A.R., Panai, R., Willse, T.: Nearly Kähler geometry and $(2,3,5)$-distributions via projective holonomy. to appear. 57pp. arXiv:1403.1959. | MR
[16] Graham, C.R., Willse, T.: Parallel tractor extension and ambient metrics of holonomy split $G_2$. J. Differential Geom. 92 (2012), 463–506, arXiv:1109.3504. | DOI | MR | Zbl
[17] Hammerl, M., Sagerschnig, K.: Conformal structures associated to generic rank 2 distributions on 5-manifolds — Characterization and Killing-field decomposition. SIGMA 5 (2009), arXiv:0908.0483. | MR | Zbl
[18] Hammerl, M., Somberg, P., Souček, V., Šilhan, J.: On a new normalization for tractor covariant derivatives. J. Eur. Math. Soc. (JEMS) 14 (2012), 1859–1883, arXiv:1003.6090. | DOI | MR | Zbl
[19] Leistner, T., Nurowski, P.: Conformal structures with $G_{2(2)}$-ambient metrics. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 11 (2012), 407–436, arXiv:0904.0186. | MR
[20] Nurowski, P.: Differential equations and conformal structures. J. Geom. Phys. 55 (2005), 19–49, arXiv:math/0406400. | MR | Zbl
[21] Sagerschnig, K.: Split octonions and generic rank two distributions in dimension five. Arch. Math. (Brno) 42 (Supplement) (2006), 329–339. | MR | Zbl
[22] Sagerschnig, K.: Weyl structures for generic rank two distributions in dimension five. Ph.D. thesis, Universität Wien, 2008.
[23] Sagerschnig, K., Willse, T.: The geometry of almost Einstein $(2, 3, 5)$ distributions. SIGMA 13 (2017), 56pp., arXiv:1606.01069. | MR | Zbl
[24] Westbury, B.: Sextonions and the magic square. J. London Math. Soc. 73 (2006), 455–474, arXiv:math/0411428. | DOI | MR | Zbl
[25] Willse, T.: Highly symmetric 2-plane fields on 5-manifolds and 5-dimensional Heisenberg group holonomy. Differential Geom. Appl. 33 (2014), 81–111, arXiv:1302.7163. | DOI | MR | Zbl
[26] Zelenko, I.: On variational approach to differential invariants of rank two distributions. Differential Geom. Appl. 24 (2006), 235–259, arXiv:math/040217. | DOI | MR | Zbl
Cité par Sources :