Three dimensional near-horizon metrics that are Einstein-Weyl
Archivum mathematicum, Tome 53 (2017) no. 5, pp. 335-345 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We investigate which three dimensional near-horizon metrics $g_{NH}$ admit a compatible 1-form $X$ such that $(X, [g_{NH}])$ defines an Einstein-Weyl structure. We find explicit examples and see that some of the solutions give rise to Einstein-Weyl structures of dispersionless KP type and dispersionless Hirota (aka hyperCR) type.
We investigate which three dimensional near-horizon metrics $g_{NH}$ admit a compatible 1-form $X$ such that $(X, [g_{NH}])$ defines an Einstein-Weyl structure. We find explicit examples and see that some of the solutions give rise to Einstein-Weyl structures of dispersionless KP type and dispersionless Hirota (aka hyperCR) type.
DOI : 10.5817/AM2017-5-335
Classification : 53B15, 53B30, 83C57
@article{10_5817_AM2017_5_335,
     author = {Randall, Matthew},
     title = {Three dimensional near-horizon metrics that are {Einstein-Weyl}},
     journal = {Archivum mathematicum},
     pages = {335--345},
     year = {2017},
     volume = {53},
     number = {5},
     doi = {10.5817/AM2017-5-335},
     mrnumber = {3746068},
     zbl = {06861561},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2017-5-335/}
}
TY  - JOUR
AU  - Randall, Matthew
TI  - Three dimensional near-horizon metrics that are Einstein-Weyl
JO  - Archivum mathematicum
PY  - 2017
SP  - 335
EP  - 345
VL  - 53
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2017-5-335/
DO  - 10.5817/AM2017-5-335
LA  - en
ID  - 10_5817_AM2017_5_335
ER  - 
%0 Journal Article
%A Randall, Matthew
%T Three dimensional near-horizon metrics that are Einstein-Weyl
%J Archivum mathematicum
%D 2017
%P 335-345
%V 53
%N 5
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2017-5-335/
%R 10.5817/AM2017-5-335
%G en
%F 10_5817_AM2017_5_335
Randall, Matthew. Three dimensional near-horizon metrics that are Einstein-Weyl. Archivum mathematicum, Tome 53 (2017) no. 5, pp. 335-345. doi: 10.5817/AM2017-5-335

[1] Calderbank, D.M.J., Kruglikov, B.: Integrability via geometry: dispersionless differential equations in three and four dimensions. arXiv:1612.02753.

[2] Cartan, E.: Sur une classe d’espaces de Weyl. Ann. Sci. École Norm. Sup. (3) 60 (1943), 1–16. | DOI | MR | Zbl

[3] Doubrov, B., Ferapontov, E.V., Kruglikov, B., Novikov, V.: On the integrability in Grassmann geometries: integrable systems associated with fourfolds $Gr(3,5)$. arXiv:1503.02274.

[4] Dunajski, M., Ferapontov, E.V., Kruglikov, B.: On the Einstein-Weyl and conformal self-duality equations. J. Math. Phys. 56 (8) (2015), 10pp., 083501. | DOI | MR | Zbl

[5] Dunajski, M., Gutowski, J., Sabra, W.: Einstein-Weyl spaces and near-horizon geometry. Classical Quantum Gravity 34 (2017), 21pp., 045009. | DOI | MR | Zbl

[6] Dunajski, M., Kryński, W.: Einstein-Weyl geometry, dispersionless Hirota equation and Veronese webs. Math. Proc. Cambridge Philos. Soc. 157 (1) (2014), 139–150. | DOI | MR | Zbl

[7] Dunajski, M., Kryński, W.: Point invariants of third-order ODEs and hyper-CR Einstein-Weyl structures. J. Geom. Phys. 86 (2014), 296–302. | DOI | MR | Zbl

[8] Dunajski, M., Mason, L.J., Tod, K.P.: Einstein-Weyl geometry, the dKP equation and twistor theory. J. Geom. Phys. 37 (2001), 63–93. | DOI | MR | Zbl

[9] Eastwood, M.G.: Notes on conformal differential geometry. Rend. Circ. Mat. Palermo (2) Suppl. 43 (1996), 57–96. | MR | Zbl

[10] Eastwood, M.G., Tod, K.P.: Local constraints on Einstein-Weyl geometries. J. Reine Angew. Math. 491 (1997), 183–198. | MR | Zbl

[11] Ferapontov, E.V., Kruglikov, B.: Dispersionless integrable systems in 3D and Einstein-Weyl geometry. J. Differential Geom. 97 (2014), 215–254. | DOI | MR | Zbl

[12] Hitchin, N.J.: Complex manifolds and Einstein’s equations. Lecture Notes in Math., Springer, Berlin-New York, 1982, Twistor geometry and nonlinear systems (Primorsko, 1980), 73–99. | DOI | MR | Zbl

[13] Kunduri, H.K., Lucietti, J.: A classification of near-horizon geometries of extremal vacuum black holes. J. Math. Phys. 50 (2009), 41pp., 082502. | DOI | MR | Zbl

[14] Kunduri, H.K., Lucietti, J.: Classification of near-horizon geometries of extremal black holes. Living Rev. Relativity 16 (2013), 8pp., arXiv:1306.2517v2. | DOI | MR | Zbl

[15] LeBrun, C., Mason, L.J.: The Einstein-Weyl equations, scattering maps, and holomorphic disks. Math. Res. Lett. 16 (2009), 291–301. | DOI | MR | Zbl

[16] Lewandowski, J., Pawlowski, T.: Extremal isolated horizons: A local uniqueness theorem. Classical Quantum Gravity 20 (2003), 587–606, arXiv:gr-qc/0208032. | DOI | MR | Zbl

[17] Lewandowski, J., Racz, I., Szereszeweski, A.: Near horizon geometries and black hole holograph. Phys. Rev. D 96 (2017), 044001, arXiv:1701.01704. | DOI

[18] Lewandowski, J., Szereszeweski, A., Waluk, P.: When isolated horizons met near horizon geometries. 2nd LeCosPA Symposium Proceedings, “Everything about Gravity" celebrating the centenary of Einstein's General Relativity, December 14-18, Taipei, 2015, arXiv:1602.01158. | MR

[19] Li, C., Lucietti, J.: Three-dimensional black holes and descendants. Phys. Lett. B 738 (2014), 48–54. | DOI | MR | Zbl

[20] Nurowski, P.: Differential equations and conformal structures. J. Geom. Phys. 55 (1) (2005), 19–49. | DOI | MR | Zbl

[21] Tod, K.P.: Einstein-Weyl spaces and third-order differential equations. J. Math. Phys. 41 (2000), 5572–5581. | DOI | MR | Zbl

Cité par Sources :