Keywords: spinorial geometry; metrisability problem; equivalence problem; first BGG operator
@article{10_5817_AM2017_5_325,
author = {P\'u\v{c}ek, Roland},
title = {Almost c-spinorial geometry},
journal = {Archivum mathematicum},
pages = {325--334},
year = {2017},
volume = {53},
number = {5},
doi = {10.5817/AM2017-5-325},
mrnumber = {3746067},
zbl = {06861560},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2017-5-325/}
}
Púček, Roland. Almost c-spinorial geometry. Archivum mathematicum, Tome 53 (2017) no. 5, pp. 325-334. doi: 10.5817/AM2017-5-325
[1] Calderbank, D.M.J., Diemer, T.: Differential invariants and curved Bernstein-Gelfand-Gelfand sequences. J. Reine Angew. Math. 537 (2001), 67–103. | MR | Zbl
[2] Calderbank, D.M.J., Diemer, T., Souček, V.: Ricci-corrected derivatives and invariant differential operators. Differential Geom. Appl. 23 (2) (2005), 149–175. | DOI | MR | Zbl
[3] Calderbank, D.M.J., Eastwood, M.G., Matveev, V.S., Neusser, K.: C-projective geometry. 2015, arXiv:1512.04516v1 [math.DG].
[4] Calderbank, D.M.J., Slovák, J., Souček, V.: Subriemannian metrics and parabolic geometries. private communication.
[5] Čap, A., Gover, A.R., Hammerl, M.: Normal BGG solutions and polynomials. Internat. J. Math. 23 (2012), 29pp. | MR | Zbl
[6] Čap, A., Slovák, J.: Parabolic geometries. I. Mathematical Surveys and Monographs, vol. 154, American Mathematical Society, Providence, RI, 2009, Background and general theory. | DOI | MR | Zbl
[8] Eastwood, M.: Notes on projective differential geometry. Symmetries and overdetermined systems of partial differential equations, IMA Vol. Math. Appl., vol. 144, Springer, New York, 2008, pp. 41–60. | MR | Zbl
[9] Eastwood, M., Matveev, V.: Metric connections in projective differential geometry. Symmetries and overdetermined systems of partial differential equations, IMA Vol. Math. Appl., vol. 144, Springer, New York, 2008, pp. 339–350. | MR | Zbl
[10] Hammerl, M., Somberg, P., Souček, V., Šilhan, J.: On a new normalization for tractor covariant derivatives. J. Eur. Math. Soc. (JEMS) 14 (6) (2012), 1859–1883. | DOI | MR | Zbl
[11] Onishchik, A.L.: Lectures on real semisimple Lie algebras and their representations. ESI Lectures in Mathematics and Physics, European Mathematical Society (EMS), Zürich, 2004. | MR | Zbl
[12] Púček, R.: Applications of invariant operators in real parabolic geometries. Master's thesis, Charles University, 2016, https://is.cuni.cz/webapps/zzp/detail/166442/
[13] Šilhan, J.: Cohomology of Lie algebras - online service. http://web.math.muni.cz/~silhan/lie/
[14] Slovák, J., Souček, V.: Invariant operators of the first order on manifolds with a given parabolic structure. Global analysis and harmonic analysis (Marseille-Luminy, (1999), Sémin. Congr., vol. 4, Soc. Math. France, Paris, 2000, pp. 251–276. | MR | Zbl
[15] Yamaguchi, K.: Geometry of linear differential systems towards contact geometry of second order. Symmetries and overdetermined systems of partial differential equations, IMA Vol. Math. Appl., vol. 144, 2008, pp. 151–203. | MR | Zbl
Cité par Sources :