Almost c-spinorial geometry
Archivum mathematicum, Tome 53 (2017) no. 5, pp. 325-334 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Almost c-spinorial geometry arises as an interesting example of the metrisability problem for parabolic geometries. It is a complex analogue of real spinorial geometry. In this paper, we first define the type of parabolic geometry in question, then we discuss its underlying geometry and its homogeneous model. We compute irreducible components of the harmonic curvature and discuss the conditions for regularity. In the second part of the paper, we describe the linearisation of the metrisability problem for Hermitian and skew-Hermitian metrics, state the corresponding first BGG equations and present explicit formulae for their solutions on the homogeneous model.
Almost c-spinorial geometry arises as an interesting example of the metrisability problem for parabolic geometries. It is a complex analogue of real spinorial geometry. In this paper, we first define the type of parabolic geometry in question, then we discuss its underlying geometry and its homogeneous model. We compute irreducible components of the harmonic curvature and discuss the conditions for regularity. In the second part of the paper, we describe the linearisation of the metrisability problem for Hermitian and skew-Hermitian metrics, state the corresponding first BGG equations and present explicit formulae for their solutions on the homogeneous model.
DOI : 10.5817/AM2017-5-325
Classification : 53A40, 53B35
Keywords: spinorial geometry; metrisability problem; equivalence problem; first BGG operator
@article{10_5817_AM2017_5_325,
     author = {P\'u\v{c}ek, Roland},
     title = {Almost c-spinorial geometry},
     journal = {Archivum mathematicum},
     pages = {325--334},
     year = {2017},
     volume = {53},
     number = {5},
     doi = {10.5817/AM2017-5-325},
     mrnumber = {3746067},
     zbl = {06861560},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2017-5-325/}
}
TY  - JOUR
AU  - Púček, Roland
TI  - Almost c-spinorial geometry
JO  - Archivum mathematicum
PY  - 2017
SP  - 325
EP  - 334
VL  - 53
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2017-5-325/
DO  - 10.5817/AM2017-5-325
LA  - en
ID  - 10_5817_AM2017_5_325
ER  - 
%0 Journal Article
%A Púček, Roland
%T Almost c-spinorial geometry
%J Archivum mathematicum
%D 2017
%P 325-334
%V 53
%N 5
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2017-5-325/
%R 10.5817/AM2017-5-325
%G en
%F 10_5817_AM2017_5_325
Púček, Roland. Almost c-spinorial geometry. Archivum mathematicum, Tome 53 (2017) no. 5, pp. 325-334. doi: 10.5817/AM2017-5-325

[1] Calderbank, D.M.J., Diemer, T.: Differential invariants and curved Bernstein-Gelfand-Gelfand sequences. J. Reine Angew. Math. 537 (2001), 67–103. | MR | Zbl

[2] Calderbank, D.M.J., Diemer, T., Souček, V.: Ricci-corrected derivatives and invariant differential operators. Differential Geom. Appl. 23 (2) (2005), 149–175. | DOI | MR | Zbl

[3] Calderbank, D.M.J., Eastwood, M.G., Matveev, V.S., Neusser, K.: C-projective geometry. 2015, arXiv:1512.04516v1 [math.DG].

[4] Calderbank, D.M.J., Slovák, J., Souček, V.: Subriemannian metrics and parabolic geometries. private communication.

[5] Čap, A., Gover, A.R., Hammerl, M.: Normal BGG solutions and polynomials. Internat. J. Math. 23 (2012), 29pp. | MR | Zbl

[6] Čap, A., Slovák, J.: Parabolic geometries. I. Mathematical Surveys and Monographs, vol. 154, American Mathematical Society, Providence, RI, 2009, Background and general theory. | DOI | MR | Zbl

[8] Eastwood, M.: Notes on projective differential geometry. Symmetries and overdetermined systems of partial differential equations, IMA Vol. Math. Appl., vol. 144, Springer, New York, 2008, pp. 41–60. | MR | Zbl

[9] Eastwood, M., Matveev, V.: Metric connections in projective differential geometry. Symmetries and overdetermined systems of partial differential equations, IMA Vol. Math. Appl., vol. 144, Springer, New York, 2008, pp. 339–350. | MR | Zbl

[10] Hammerl, M., Somberg, P., Souček, V., Šilhan, J.: On a new normalization for tractor covariant derivatives. J. Eur. Math. Soc. (JEMS) 14 (6) (2012), 1859–1883. | DOI | MR | Zbl

[11] Onishchik, A.L.: Lectures on real semisimple Lie algebras and their representations. ESI Lectures in Mathematics and Physics, European Mathematical Society (EMS), Zürich, 2004. | MR | Zbl

[12] Púček, R.: Applications of invariant operators in real parabolic geometries. Master's thesis, Charles University, 2016, https://is.cuni.cz/webapps/zzp/detail/166442/

[13] Šilhan, J.: Cohomology of Lie algebras - online service. http://web.math.muni.cz/~silhan/lie/

[14] Slovák, J., Souček, V.: Invariant operators of the first order on manifolds with a given parabolic structure. Global analysis and harmonic analysis (Marseille-Luminy, (1999), Sémin. Congr., vol. 4, Soc. Math. France, Paris, 2000, pp. 251–276. | MR | Zbl

[15] Yamaguchi, K.: Geometry of linear differential systems towards contact geometry of second order. Symmetries and overdetermined systems of partial differential equations, IMA Vol. Math. Appl., vol. 144, 2008, pp. 151–203. | MR | Zbl

Cité par Sources :