Scalar perturbations in f(R) cosmologies in the late Universe
Archivum mathematicum, Tome 53 (2017) no. 5, pp. 313-324
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Standard approach in cosmology is hydrodynamical approach, when galaxies are smoothed distributions of matter. Then we model the Universe as a fluid. But we know, that the Universe has a discrete structure on scales 150 - 370 MPc. Therefore we must use the generalized mechanical approach, when is the mass concentrated in points. Methods of computations are then different. We focus on $f(R)$-theories of gravity and we work in the cell of uniformity in the late Universe. We do the scalar perturbations and we use 3 approximations. First we neglect the time derivatives and we do the astrophysical approach and we find the potentials $\Phi $ and $\Psi $ in this case. Then we do the large scalaron mass approximation and we again obtain the potentials. Final step is the quasi-static approximation, when we use the equations from astrophysical approach and the result are the potentials $\Phi $ and $\Psi $. The resulting potentials are combination of Yukawa terms, which are characteristic for $f(R)$-theories, and standard potential.
Standard approach in cosmology is hydrodynamical approach, when galaxies are smoothed distributions of matter. Then we model the Universe as a fluid. But we know, that the Universe has a discrete structure on scales 150 - 370 MPc. Therefore we must use the generalized mechanical approach, when is the mass concentrated in points. Methods of computations are then different. We focus on $f(R)$-theories of gravity and we work in the cell of uniformity in the late Universe. We do the scalar perturbations and we use 3 approximations. First we neglect the time derivatives and we do the astrophysical approach and we find the potentials $\Phi $ and $\Psi $ in this case. Then we do the large scalaron mass approximation and we again obtain the potentials. Final step is the quasi-static approximation, when we use the equations from astrophysical approach and the result are the potentials $\Phi $ and $\Psi $. The resulting potentials are combination of Yukawa terms, which are characteristic for $f(R)$-theories, and standard potential.
DOI : 10.5817/AM2017-5-313
Classification : 83C55, 83D05, 83F05
Keywords: mechanical approach; Hubble law; Friedmann equation; Einstein equation; scalar perturbation; tensor of energy-momentum
@article{10_5817_AM2017_5_313,
     author = {Nov\'ak, Jan},
     title = {Scalar perturbations in {f(R)} cosmologies in the late {Universe}},
     journal = {Archivum mathematicum},
     pages = {313--324},
     year = {2017},
     volume = {53},
     number = {5},
     doi = {10.5817/AM2017-5-313},
     mrnumber = {3746066},
     zbl = {06861559},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2017-5-313/}
}
TY  - JOUR
AU  - Novák, Jan
TI  - Scalar perturbations in f(R) cosmologies in the late Universe
JO  - Archivum mathematicum
PY  - 2017
SP  - 313
EP  - 324
VL  - 53
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2017-5-313/
DO  - 10.5817/AM2017-5-313
LA  - en
ID  - 10_5817_AM2017_5_313
ER  - 
%0 Journal Article
%A Novák, Jan
%T Scalar perturbations in f(R) cosmologies in the late Universe
%J Archivum mathematicum
%D 2017
%P 313-324
%V 53
%N 5
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2017-5-313/
%R 10.5817/AM2017-5-313
%G en
%F 10_5817_AM2017_5_313
Novák, Jan. Scalar perturbations in f(R) cosmologies in the late Universe. Archivum mathematicum, Tome 53 (2017) no. 5, pp. 313-324. doi: 10.5817/AM2017-5-313

[1] Berry, C.P.L., Gair, J.R.: Linearized $f(R)$ gravity: gravitational radiation and solar system tests. Phys. Rev. D 83 1004022 (2011), arXiv:1104.0819.

[2] Burgazli, A., Eingorn, M., Zhuk, A.: Rigorous theoretical constraint on constant negative EoS parameter $w$ and its effect for late Universe. Eur. Phys. J. C 75 118 (2015), arXiv:1301.0418. | DOI

[3] Eingorn, M.: First-order cosmological perturbationsengendered by point-like masses. arXiv:1509.03835v3.

[4] Eingorn, M., Novák, J., Zhuk, A.: $f(R)$ gravity:scalar peturbations in the late Universe. Eur. Phys. J. C 74 3005 (2014), arXiv:astro-ph/1401.5410. | DOI

[5] Eingorn, M., Zhuk, A.: Hubble flows and gravitational potentials in observable Universe. arXiv:1205.2384. | MR

[6] Eingorn, M., Zhuk, A.: Weak-field limit of $f(R)$-gravity in three and more spatial dimensions. Phys. Rev. D 84 024023 (2011), arXiv:1104.1456 [gr-qc]. | DOI

[7] Eingorn, M., Zhuk, A.: Remarks on mechanical approach to observable universe. JCAP 05 024 (2014), arXiv: 1309.4924. | MR

[8] Garcia-Bellido, J.: Cosmology and astrophysics. arXiv: astro-ph/0502139.

[9] Hu, W., Sawicky, I.: Models of $f(R)$ cosmic acceleration that evade solar system test. Phys. Rev. D 76 064004 (2007), arxiv:0705.1158 [astro-ph].

[10] Jaime, L.G., Patino, L., Salgado, M.: $f(R)$ cosmology revisted. arXiv:1206.1642 [gr-qc].

[11] Jaime, L.G., Patino, L., Salgado, M.: Note on the equation of state of geometric dark-energy in f(R) gravity. Phys. Rev.D 89 084010 (2014), arXiv:gr-qc/1312.5428. | DOI

[12] Miranda, V., Joras, S., Waga, I., Quartin, M.: Viable singularity-free f(R)-gravity without a cosmological constant. Phys. Rev. Lett. 102 221101 (2009), arXiv: 0905.1941 [astro-ph]. | DOI

[13] Naf, J., Jetzer, P.: On the $1/c$ expansion of $f(R)$ gravity. Phys. Rev. D 81 104003 (2010), arXiv:1004.2014 [gr-qc].

[14] Riess, A.G. et al., : Observational evidence from supernovae for an accelerating Universe and a cosmological constant. Astronom. J. 116 (1998), 1009–1038. | DOI

[15] Starobinsky, A.A.: Disappearing cosmological constant in $f(R)$ gravity. JETP Lett 86 (2007), 157–163, arXiv:0706.2041. | DOI

[16] Tsujikawa, S., Udin, K., Tavakol, R.: Density perturbations in $f(R)$ gravity theories in metric and Palatini formalisms. Phys. Rev. D 77 043007 (2008), arXiv:0712.0082v2. | DOI | MR

Cité par Sources :