Keywords: mechanical approach; Hubble law; Friedmann equation; Einstein equation; scalar perturbation; tensor of energy-momentum
@article{10_5817_AM2017_5_313,
author = {Nov\'ak, Jan},
title = {Scalar perturbations in {f(R)} cosmologies in the late {Universe}},
journal = {Archivum mathematicum},
pages = {313--324},
year = {2017},
volume = {53},
number = {5},
doi = {10.5817/AM2017-5-313},
mrnumber = {3746066},
zbl = {06861559},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2017-5-313/}
}
Novák, Jan. Scalar perturbations in f(R) cosmologies in the late Universe. Archivum mathematicum, Tome 53 (2017) no. 5, pp. 313-324. doi: 10.5817/AM2017-5-313
[1] Berry, C.P.L., Gair, J.R.: Linearized $f(R)$ gravity: gravitational radiation and solar system tests. Phys. Rev. D 83 1004022 (2011), arXiv:1104.0819.
[2] Burgazli, A., Eingorn, M., Zhuk, A.: Rigorous theoretical constraint on constant negative EoS parameter $w$ and its effect for late Universe. Eur. Phys. J. C 75 118 (2015), arXiv:1301.0418. | DOI
[3] Eingorn, M.: First-order cosmological perturbationsengendered by point-like masses. arXiv:1509.03835v3.
[4] Eingorn, M., Novák, J., Zhuk, A.: $f(R)$ gravity:scalar peturbations in the late Universe. Eur. Phys. J. C 74 3005 (2014), arXiv:astro-ph/1401.5410. | DOI
[5] Eingorn, M., Zhuk, A.: Hubble flows and gravitational potentials in observable Universe. arXiv:1205.2384. | MR
[6] Eingorn, M., Zhuk, A.: Weak-field limit of $f(R)$-gravity in three and more spatial dimensions. Phys. Rev. D 84 024023 (2011), arXiv:1104.1456 [gr-qc]. | DOI
[7] Eingorn, M., Zhuk, A.: Remarks on mechanical approach to observable universe. JCAP 05 024 (2014), arXiv: 1309.4924. | MR
[8] Garcia-Bellido, J.: Cosmology and astrophysics. arXiv: astro-ph/0502139.
[9] Hu, W., Sawicky, I.: Models of $f(R)$ cosmic acceleration that evade solar system test. Phys. Rev. D 76 064004 (2007), arxiv:0705.1158 [astro-ph].
[10] Jaime, L.G., Patino, L., Salgado, M.: $f(R)$ cosmology revisted. arXiv:1206.1642 [gr-qc].
[11] Jaime, L.G., Patino, L., Salgado, M.: Note on the equation of state of geometric dark-energy in f(R) gravity. Phys. Rev.D 89 084010 (2014), arXiv:gr-qc/1312.5428. | DOI
[12] Miranda, V., Joras, S., Waga, I., Quartin, M.: Viable singularity-free f(R)-gravity without a cosmological constant. Phys. Rev. Lett. 102 221101 (2009), arXiv: 0905.1941 [astro-ph]. | DOI
[13] Naf, J., Jetzer, P.: On the $1/c$ expansion of $f(R)$ gravity. Phys. Rev. D 81 104003 (2010), arXiv:1004.2014 [gr-qc].
[14] Riess, A.G. et al., : Observational evidence from supernovae for an accelerating Universe and a cosmological constant. Astronom. J. 116 (1998), 1009–1038. | DOI
[15] Starobinsky, A.A.: Disappearing cosmological constant in $f(R)$ gravity. JETP Lett 86 (2007), 157–163, arXiv:0706.2041. | DOI
[16] Tsujikawa, S., Udin, K., Tavakol, R.: Density perturbations in $f(R)$ gravity theories in metric and Palatini formalisms. Phys. Rev. D 77 043007 (2008), arXiv:0712.0082v2. | DOI | MR
Cité par Sources :