Keywords: $A_\infty $ structures; transfer; homological perturbation lemma
@article{10_5817_AM2017_5_267,
author = {Kop\v{r}iva, Jakub},
title = {On the homotopy transfer of $A_\infty$ structures},
journal = {Archivum mathematicum},
pages = {267--312},
year = {2017},
volume = {53},
number = {5},
doi = {10.5817/AM2017-5-267},
mrnumber = {3746065},
zbl = {06861558},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2017-5-267/}
}
Kopřiva, Jakub. On the homotopy transfer of $A_\infty$ structures. Archivum mathematicum, Tome 53 (2017) no. 5, pp. 267-312. doi: 10.5817/AM2017-5-267
[1] Crainic, M.: On the perturbation lemma, and deformations. 2004, ArXiv preprint math.AT/0403266.
[2] Hatcher, A.: Algebraic topology. Cambridge University Press, Cambridge, New York, 2002. | MR | Zbl
[3] Huebschmann, J.: On the construction of $A_\infty $-structures. Georgian Math. J. 17 (1) (2010), 161–202. | MR | Zbl
[4] Keller, B.: Introduction to $A_\infty $ algebras and modules. Homology Homotopy Appl. 3 (1) (2001), 1–35. | MR
[5] Kontsevich, M., Soibelman, Y.: Homological mirror symmetry and torus fibrations, Symplectic geometry and mirror symmetry. (Seoul, 2000), World Sci. Publ., River Edge, NJ (2001), 203–263. | MR
[6] Lefèvre-Hasegawa, K.: Sur les $A_\infty $ catégories. Ph.D. thesis, Université Paris 7 – Denis Diderot, 2003.
[7] Markl, M.: Transferring $A_\infty $ (strongly homotopy associative) structures. Rend. Circ. Mat. Palermo (2) Suppl. (2006), no. 79, 139–151. | MR | Zbl
[8] Markl, M., Shnider, S., Stasheff, J.D.: Operads in Algebra, Topology and Physics. Mathematical Surveys and Monographs, American Mathematical Society, Providence, Rhode Island, 2002. | MR | Zbl
[9] Merkulov, S.: Strongly Homotopy Algebras of a Kähler Manifold. Internat. Math. Res. Notices (1999), no. 3, 153–164. | DOI
[10] Prouté, A.: $A_\infty $-structures: Modèles Minimaux de Baues-Lemaire et Kadeishvili et Homologie des Fibrations. Ph.D. thesis, Université Paris 7 – Denis Diderot, 1986.
[11] Weibel, C.A.: An introduction to homological algebra. Cambridge University Press, 1995. | Zbl
Cité par Sources :