Infinitesimal CR automorphisms for a class of polynomial models
Archivum mathematicum, Tome 53 (2017) no. 5, pp. 255-265 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we study infinitesimal CR automorphisms of Levi degenerate hypersurfaces. We illustrate the recent general results of [18], [17], [15], on a class of concrete examples, polynomial models in $\mathbb{C}^3$ of the form $\Im \; w = \Re (P(z) \overline{Q(z)}) $, where $P$ and $Q$ are weighted homogeneous holomorphic polynomials in $z = (z_1, z_2)$. We classify such models according to their Lie algebra of infinitesimal CR automorphisms. We also give the first example of a non monomial model which admits a nonlinear rigid automorphism.
In this paper we study infinitesimal CR automorphisms of Levi degenerate hypersurfaces. We illustrate the recent general results of [18], [17], [15], on a class of concrete examples, polynomial models in $\mathbb{C}^3$ of the form $\Im \; w = \Re (P(z) \overline{Q(z)}) $, where $P$ and $Q$ are weighted homogeneous holomorphic polynomials in $z = (z_1, z_2)$. We classify such models according to their Lie algebra of infinitesimal CR automorphisms. We also give the first example of a non monomial model which admits a nonlinear rigid automorphism.
DOI : 10.5817/AM2017-5-255
Classification : 32V35, 32V40
Keywords: Levi degenerate hypersurfaces; finite multitype; polynomial models; infinitesimal CR automorphisms
@article{10_5817_AM2017_5_255,
     author = {Kol\'a\v{r}, Martin and Meylan, Francine},
     title = {Infinitesimal {CR} automorphisms for a class of polynomial models},
     journal = {Archivum mathematicum},
     pages = {255--265},
     year = {2017},
     volume = {53},
     number = {5},
     doi = {10.5817/AM2017-5-255},
     mrnumber = {3746064},
     zbl = {06861557},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2017-5-255/}
}
TY  - JOUR
AU  - Kolář, Martin
AU  - Meylan, Francine
TI  - Infinitesimal CR automorphisms for a class of polynomial models
JO  - Archivum mathematicum
PY  - 2017
SP  - 255
EP  - 265
VL  - 53
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2017-5-255/
DO  - 10.5817/AM2017-5-255
LA  - en
ID  - 10_5817_AM2017_5_255
ER  - 
%0 Journal Article
%A Kolář, Martin
%A Meylan, Francine
%T Infinitesimal CR automorphisms for a class of polynomial models
%J Archivum mathematicum
%D 2017
%P 255-265
%V 53
%N 5
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2017-5-255/
%R 10.5817/AM2017-5-255
%G en
%F 10_5817_AM2017_5_255
Kolář, Martin; Meylan, Francine. Infinitesimal CR automorphisms for a class of polynomial models. Archivum mathematicum, Tome 53 (2017) no. 5, pp. 255-265. doi: 10.5817/AM2017-5-255

[1] Baouendi, M.S., Ebenfelt, P., Rothschild, L.P.: Local geometric properties of real submanifolds in complex space. Bull. Amer. Math. Soc. (N.S.) 37 (3) (2000), 309–336. | DOI | MR

[2] Bedford, E., Pinchuk, S.I.: Convex domains with noncompact groups of automorphisms. Mat. Sb. 185 (1994), 3–26. | MR

[3] Bloom, T., Graham, I.: On “type” conditions for generic real submanifolds of $C^{n}$. Invent. Math. 40 (3) (1977), 217–243. | DOI | MR

[4] Cartan, E.: Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes, I. Ann. Math. Pura Appl. 11 (1932), 17–90. | DOI | MR

[5] Cartan, E.: Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes, II. Ann. Scuola Norm. Sup. Pisa 1 (1932), 333–354. | MR

[6] Catlin, D.: Boundary invariants of pseudoconvex domains. Ann. of Math. (2) 120 (1984), 529–586. | MR | Zbl

[7] Chern, S. S., Moser, J.: Real hypersurfaces in complex manifolds. Acta Math. 133 (1974), 219–271. | DOI | MR

[8] D’Angelo, J.: Orders od contact, real hypersurfaces and applications. Ann. of Math. (2) 115 (1982), 615–637. | MR

[9] Kim, S.Y., Zaitsev, D.: Equivalence and embedding problems for CR-structures of any codimension. Topology 44 (2005), 557–584. | DOI | MR | Zbl

[10] Kohn, J.J.: Boundary behaviour of $\bar{\partial }$ on weakly pseudoconvex manifolds of dimension two. J. Differential Geom. 6 (1972), 523–542. | DOI | MR

[11] Kolář, M.: Normal forms for hypersurfaces of finite type in $\mathbb{C}^2$. Math. Res. Lett. 12 (2005), 523–542. | DOI | MR

[12] Kolář, M.: The Catlin multitype and biholomorphic equivalence of models. Internat. Math. Res. Notices 18 (2010), 3530–3548. | DOI | MR | Zbl

[13] Kolář, M., Kossovskiy, I., Zaitsev, D.: Normal forms in Cauchy-Riemann geometry. Analysis and geometry in several complex variables, vol. 681, Contemp. Math., 2017, pp. 153–177. | MR | Zbl

[14] Kolář, M., Lamel, B.: Ruled hypersurfaces in $\mathbb{C}^{2}$. J. Geom. Anal. 25 (2015), 1240–1281. | DOI | MR | Zbl

[15] Kolář, M., Meylan, F.: Nonlinear CR automorphisms of Levi degenerate hypersurfaces and a new gap phenomenon. arXiv : 1703.07123 [CV].

[16] Kolář, M., Meylan, F.: Chern-Moser operators and weighted jet determination problems. Geometric analysis of several complex variables and related topics, vol. 550, Contemp. Math., 2011, pp. 75–88. | MR | Zbl

[17] Kolář, M., Meylan, F.: Higher order symmetries of real hypersurfaces in $\mathbb{C}^3$. Proc. Amer. Math. Soc. 144 (2016), 4807–4818. | DOI | MR | Zbl

[18] Kolář, M., Meylan, F., Zaitsev, D.: Chern-Moser operators and polynomial models in CR geometry. Adv. Math. 263 (2014), 321–356. | DOI | MR | Zbl

[19] Poincaré, H.: Les fonctions analytique de deux variables et la représentation conforme. Rend. Circ. Mat. Palermo 23 (1907), 185–220. | DOI

[20] Vitushkin, A.G.: Real analytic hypersurfaces in complex manifolds. Russian Math. Surveys 40 (1985), 1–35. | DOI | MR | Zbl

[21] Webster, S.M.: On the Moser normal form at a non-umbilic point. Math. Ann. 233 (1978), 97–102. | DOI | MR | Zbl

Cité par Sources :